Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кузбасский гуманитарно-педагогический институт федерального государственного бюджетного образовательного учреждения высшего образования

«Кемеровский государственный университет» Факультет информатики, математики и экономики

> УТВЕРЖДАЮ Декан
> ________ А. В. Фомина
> «09» февраля 2023 г.

Рабочая программа дисциплины

К.М.05ДВ.01.02 Математические модели гидродинамики

Направление подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки

Математическое моделирование

Программа *магистратуры*

Квалификация выпускника магистр

> Форма обучения очная

Год набора 2022

Новокузнецк 2023

Оглавление

1 Цель дисциплины	3
1.1 Формируемые компетенции	3
1.2 Индикаторы достижения компетенций	3
1.3 Знания, умения, навыки (ЗУВ) по дисциплине	
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы	
промежуточной аттестации	4
3. Учебно-тематический план и содержание дисциплины	4
3.1 Учебно-тематический план	5
3.2. Содержание занятий по видам учебной работы	5
4 Порядок оценивания успеваемости и сформированности компетенций	
обучающегося в текущей и промежуточной аттестации	5
5 Материально-техническое, программное и учебно-методическое	
обеспечение дисциплины	6
5.1 Учебная литература	6
5.2 Материально-техническое и программное обеспечение дисциплины	7
5.3 Современные профессиональные базы данных и информационные	
справочные системы	7
6 Иные сведения и (или) материалы	8
6.1. Примерные вопросы и задания / задачи для промежуточной аттестации	. 8

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы магистратуры (далее - ОПОП):

ПК-1 Способен проводить научно-исследовательские и опытно-конструкторские разработки при исследовании самостоятельных тем.

Содержание компетенций как планируемых результатов обучения по дисциплине см. таблицы 1 и 2.

1.1 Формируемые компетенции

Таблица 1 - Формируемые дисциплиной компетенции

Наименование вида компетенции (универсальная, общепрофессиональная)	Наименование категории (группы) компетенций	Код и название компетенции
профессиональная	Научно- исследовательская	ПК-1 Способен проводить научно- исследовательские и опытно- конструкторские разработки при исследовании самостоятельных тем

1.2 Индикаторы достижения компетенций

Таблица 2 – Индикаторы достижения компетенций, формируемые дисциплиной

		<u> </u>
Код и название компетенции	Индикаторы достижения	Дисциплины и практики,
	компетенции по ОПОП	формирующие компетенцию ОПОП
ПК-1 Способен проводить	ПК 1.1. Осуществляет	К.М.05.01 Организация и
научно-исследовательские и	разработку планов и	планирование НИР и ОКР
опытно-конструкторские	методических программ	К.М.05.02 Численные методы
разработки при	проведения исследований,	решения краевых задач
исследовании	организует проведение	К.М.05.03 Алгоритмизация
самостоятельных тем	исследования.	математических моделей
	ПК 1.2. Организует сбор и	К.М.05.04 Методы конечных
	изучение научно-технической	элементов
	информации по теме	К.М.05.05 Семинар по научно-
	исследований и разработок.	исследовательской работе
	ПК 1.3 Оценивает качество	К.М.05.06 Технологии разработки
	формализации и	программного обеспечения для
	алгоритмизации	научных исследований
	поставленных задач	К.М.05.07 Математические модели
	ПК 1.4. Оценивает качество и	упругости, пластичности и
	эффективности программного	ползучести
	кода. Принимает решения по	К.М.05.ДВ.01.01 Моделирование
	его изменению.	прочности устойчивости и
	ПК 1.5. Проводит анализ	динамики конструкций
	научных данных, результатов	К.М.05.ДВ.01.02 Математические
	экспериментов и наблюдений.	модели гидродинамики
	ПК 1.6 Осуществляет	К.М.06.04(Пд) Преддипломная
	теоретическое обобщение	практика
	научных данных, результатов	К.М.07.01(Д) Выполнение и защита
	экспериментов и наблюдений.	выпускной квалификационной
	ПК 1.7 Проводит разработку и	работы
	оценку качества технической	

Код и название компетенции	<u>-</u>	Дисциплины и практики, формирующие компетенцию ОПОП
	документации	

1.3 Знания, умения, навыки (ЗУВ) по дисциплине

Таблица 3 – Знания, умения, навыки, формируемые дисциплиной

Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ),
компетенции	компетенции, закрепленные	формируемые дисциплиной
	за дисциплиной	
ПК-1 Способен	ПК 1.5 Проводит анализ	Уметь:
проводить научно-	научных данных,	- обобщать имеющиеся научные данные,
исследовательские и	результатов экспериментов и	результаты экспериментов и наблюдений и составлять на основе анализа этих данных
опытно-конструкторские	наблюдений.	краевые задачи гидродинамики
разработки при	ПК 1.6 Осуществляет	Владеть:
исследовании	теоретическое обобщение	 навыками использования методов
самостоятельных тем	научных данных,	моделирования течения жидкости для решения
	результатов экспериментов и	научно-исследовательских и опытно-конструкторских задач
	наблюдений.	Konerpykropekna sugur

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 4 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине,		и часов по ф обучения	ормам
проводимые в разных формах	ОФО	ОЗФО	ЗФО
1 Общая трудоемкость дисциплины	108		
2 Контактная работа обучающихся с преподавателем (по видам	32		
учебных занятий) (всего)			
Аудиторная работа (всего):	32		
в том числе:			
лекции			
практические занятия, семинары	32		
практикумы			
лабораторные работы			
в интерактивной форме			
в электронной форме			
Внеаудиторная работа (всего):	76		
в том числе, индивидуальная работа обучающихся с			
преподавателем			
подготовка курсовой работы /контактная работа			
групповая, индивидуальная консультация и иные виды			
учебной деятельности, предусматривающие групповую			
или индивидуальную работу обучающихся с			
преподавателем)			
творческая работа (эссе)			
3 Самостоятельная работа обучающихся (всего)	76		
4 Промежуточная аттестация обучающегося и объём часов, выделенный на промежуточную аттестацию: - зачет с оценкой	-		

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 5 - Учебно-тематический план очной формы обучения

ІИ	Разделы и темы дисциплины	Общая трудоём		рудоем ОФО	кость з		я́ (час.) ОЗФО		Формы текущего
№ недели п/п	по занятиям	кость (всего час.)	Ауди заня лекц.		СРС	заня	торн. тия практ.	CPC	контроля и промежуточно й аттестации успеваемости
1-2	Уравнения неразрывности, движения, энергии, диффузии	38	6	6	26	лекц.	прикт		Устный опрос
3-4	Понятие турбулентности и основные подходы к описанию турбулентных течений	34	4	4	26				Устный опрос
5-6	Получение новых уравнений переноса из комбинаций уравнений неразрывности, движения и энергии	36	6	6	24				Устный опрос
	Промежуточная аттестация (зачет с оценкой)								
	Всего:	108	16	48	76				-

3.2. Содержание занятий по видам учебной работы

Таблица 6 – Содержание дисциплины

Ma	11	
No	Наименование раздела,	Содержание занятия
п/п	темы дисциплины	77 1
(Содержание лекционного курс	а
1	Уравнения неразрывности, движения, энергии, диффузии	Введение. Основные уравнения гидродинамики. Замкнутые системы уравнений гидродинамики. Частные формулировки уравнений гидродинамики. Установившиеся течения. Интеграл Бернулли. Потенциальные течения. Интеграл Коши-Лагранжа
2	Понятие турбулентности и основные подходы к описанию турбулентных течений	Составление моделей течения с учетом турбулентности. Учет кривизны при расчете турбулентных течений.
3	Получение новых уравнений переноса из комбинаций уравнений неразрывности, движения и энергии	Уравнение Лайтхилла и связанные с ним соотношения. Трансформация уравнений Навье-Стокса. Уравнение переноса тензора напряжений Рейнольдса.
Соде	ржание практических заняти	ий
	Уравнения неразрывности, движения, энергии, диффузии	Решение основных уравнений гидродинамики. Составление замкнутых систем уравнений гидродинамики. Составление и решение частных видов уравнений гидродинамики.
	Понятие турбулентности и основные подходы к описанию турбулентных течений	Составление моделей течения с учетом турбулентности. Учет кривизны при расчете турбулентных течений.
	Получение новых уравнений переноса из комбинаций уравнений неразрывности, движения и энергии	Построение уравнения Лайтхилла. Преобразования уравнений Навье-Стокса. Построение уравнений переноса тензора напряжений Рейнольдса.

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 7.

Таблица 7 - Шкала и показатели оценивания результатов учебной работы

обучающихся по видам в балльно-рейтинговой системе (БРС)

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы
(виды)	баллов	учебной работы	(шкала и показатели оценивания)	
\Текущая учебная работа в семестре (Посещение занятий по расписанию и выполнение заданий)		Практические занятия (6 занятий). Устный опрос по теме «Уравнения	3 балл - посещение 1 практического занятия и выполнение работы на 51-65% 5 балла — посещение 1 занятия и существенный вклад на занятии в работу всей группы, самостоятельность и выполнение работы на 85,1-100% 8 баллов (выполнено 51 - 65% заданий) 14 баллов (выполнено 66 - 85% заданий)	18-30 20
		неразрывности, движения, энергии, диффузии»	20 баллов (выполнено 86 - 100% заданий)	
		Устный опрос по теме «Понятие турбулентности и	8 баллов (выполнено 51 - 65% заданий) 14 баллов (выполнено 66 - 85% заданий) 20 баллов (выполнено 86 - 100% заданий)	20
		основные подходы к описанию турбулентных течений»		
		Устный опрос по теме «Получение новых уравнений переноса из комбинаций уравнений неразрывности, движения и энергии»	4 балла (выполнено 51 - 65% заданий) 7 баллов (выполнено 66 - 85% заданий) 10 баллов (выполнено 86 - 100% заданий)	
Итого по текуще	й работе в	семестре		41 - 80
Промежуточная аттестация (зачет	20	Решение задачи 1.	5 баллов (пороговое значение) 10 баллов (максимальное значение)	5-10
с оценкой)		Решение задачи 2.	5 баллов (пороговое значение) 10 баллов (максимальное значение)	5-10
Итого по промеж	уточной а	ттестации (зачет)		10-20
Суммарная оцен	ка по дисі	циплине: Сумма баллов то	екущей и промежуточной аттестации 51 –	100 б.

В промежуточной аттестации оценка выставляется в ведомость в 100-балльной шкале и в буквенном эквиваленте (таблица 8)

Таблица 8 – Соотнесение 100-балльной шкалы и буквенного эквивалента оценки

Consideration	Уровни освоения		Экзамен	Зачет
Сумма набранных баллов	дисциплины и	Оценка	Буквенный эквивалент	Буквенный
Оаллов	компетенций			эквивалент
86 - 100	Продвинутый	5	отлично	
66 - 85	Повышенный	4	хорошо	Зачтено
51 - 65	Пороговый	3	удовлетворительно	
0 - 50	Первый	2	неудовлетворительно	Не зачтено

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

1. Павловский, В. А. Вычислительная гидродинамика. Теоретические основы : учебное пособие / В. А. Павловский, Д. В. Никущенко. — Санкт-Петербург : Издательство «Лань», 2018. — 368 с. — (Высшее образование). — ISBN 978-5-8114-2924-0. — Текст : электронный //

ЭБС Лань [сайт]. — URL: https://e.lanbook.com/reader/book/103064/#2.

Дополнительная учебная литература

- 2. Вольмир, А. С. Оболочки в потоке жидкости и газа: задачи гидроупругости: учебное пособие для вузов / А. С. Вольмир. 2-е изд., стер. Москва: Издательство Юрайт, 2020. 326 с. (Высшее образование). ISBN 978-5-534-06871-9. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/454267.
- 3. Тихоненков, Б. П. Гидравлика и гидроприводы : учебное пособие / Б. П. Тихоненков. Москва : МГАВТ, 2005. 112 с. : 54 ил. Текст : электронный. URL: https://znanium.com/catalog/product/400696. Режим доступа: по подписке.
- 4. Шиляев, М. И. Гидродинамика и тепломассообмен пленочных течений в полях массовых сил и их приложения: Монография. М.: ИНФРА-М, 2019. 198 с. (Научная мысль). DOI 10.12737/603 (www.doi.org). ISBN 978-5-16-009291-1. Текст : электронный. URL: https://znanium.com/catalog/product/1013435. Режим доступа: по подписке
- 5. Жуков, М. Использование пакета конечных элементов FreeFen++ для задач гидродинамики, электрофореза и биологии: монография / Жуков М.Ю., Ширяева Е.В. Ростов-на-Дону: Издательство ЮФУ, 2008. 256 с.ISBN 978-5-9275-0378-0. Текст: электронный. URL: https://znanium.com/catalog/product/551185. Режим доступа: по подписке.

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях НФИ КемГУ:

410 Учебная аудитория (мультимедийная) для проведения:	654079,
- занятий семинарского (практического) типа;	Кемеровская
- групповых и индивидуальных консультаций;	область, г.
- текущего контроля и промежуточной аттестации;	Новокузнецк,
Специализированная (учебная) мебель: доска меловая, кафедра, моноблоки	пр-кт
аудиторные.	Металлургов,
Оборудование: стационарное - компьютер, экран, проектор.	д. 19
Используемое программное обеспечение: MSWindows, LibreOffice (свободно	
распространяемое ПО), Яндекс. Браузер (отечественное свободно	
распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
•	

106 Помещение для самостоятельной работы студентов.	654079,
Специализированная (учебная) мебель: доска меловая переносная, столы,	Кемеровская
стулья, рабочее место для обучающегося с ОВЗ.	область, г.
Оборудование: стационарное – компьютеры для обучающихся (3 шт.),	Новокузнецк,
телевизор.	пр-кт
Используемое программное обеспечение: MSWindows, LibreOffice (свободно	Металлургов,
распространяемое ПО), Яндекс. Браузер (отечественное свободно	д. 19
распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
225 Помещение для самостоятельной работы студентов.	654079,
Специализированная (учебная) мебель: столы, стулья.	Кемеровская
Оборудование: стационарное - компьютеры для обучающихся (10 шт.).	область, г.
Используемое программное обеспечение: MSWindows, LibreOffice (свободно	Новокузнецк,
распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox 14	пр-кт
(свободно распространяемое ПО), Яндекс. Браузер (отечественное свободно	Металлургов,
распространяемое ПО).	д. 19
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и

информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

Общероссийский математический портал (информационная система) http://www.mathnet.ru/

Научная электронная библиотека eLIBRARY.RU — крупнейший российский информационный портал в области науки, технологии, 62 медицины и образования, содержащий рефераты и полные тексты - www.elibrary.ru

Экспонента центр инженерных технологий и моделирования - http://www.exponenta.ru

Science Direct содержит более 1500 журналов издательства Elsevier, среди них издания по математике и информатике. https://www.sciencedirect.com

База книг и публикаций Электронной библиотеки "Наука и Техника" - http://www.n-t.ru

Информационная система «Единое окно доступа к информационным ресурсам» - http://window.edu.ru/catalog/

Базы данных и аналитические публикации на портале «Университетская информационная система Россия» - https://uisrussia.msu.ru/

6 Иные сведения и (или) материалы.

6.1. Примерные вопросы и задания / задачи для промежуточной аттестации

 Таблица 9 - Примерные теоретические вопросы и практические задания /

 задачи к зачету

задачи к зачету		
Разделы	Примерные теоретические вопросы	Примерные практические задания /
и темы		задачи
1. Уравнения неразрывности, движения, энергии, диффузии		
	1. Основные понятия гидродинамики. Расход	1. Составить и решить задачу о течении
	жидкости и средняя скорость потока.	вязкой несжимаемой жидкости в
	2. Типы жидкостей (классификация).	прямоугольной области с непроницаемыми
	Идеальная и вязкая жидкости; понятие о	стенками в случае, когда на одной из
	неньютоновской жидкости.	сторон прямоугольника задана постоянная
	3. Методы гидромеханики.	касательная скорость жидкости $u0 = 0$.
	4. Дифференциальное уравнение Эйлера	2. Составить и решить задачу и
	(идеальная жидкость).	протекании жидкости в Т-образном канале.
	5. Уравнения неразрывности или закон	3. Написать определяющие уравнения для
	сохранения массы.	ньютоновой жидкости с нулевой объемной
	6. Закон сохранения массы для струйки тока.	вязкостью $x^* \equiv 0$.
	7. Уравнения Навье-Стокса для несжимаемой	4. Написать условия, при которых среднее
	жидкости	нормальное давление $p_{(m)} = -\sigma_{ii}/3$ равно
	8. Уравнение теплопроводности	термодинамическому давлению р в
	(конвективного переноса), начальные и	ньютоновой жидкости.
	граничные условия.	
	9. Простейшие аналитические решения	
	краевых задач гидродинамики и теплообмена	
	10. Завихренность	
	11. Уравнения движения в форме Громеки-	
	Ламба	
	12. Уравнения движения в форме переноса	
	завихренности	
	13. Краевые задачи для уравнений в	
	преобразованных переменных	
	14. Установившееся квазистационарное	
	движение	
	15. Гидростатика	
	16. Уравнение Бернулли для элементарной	
	струйки идеальной и реальной жидкости.	

- 17. Физический смысл уравнения Бернулли. Его геометрическая интерпретация. Гидравлический уклон.
 18. Уравнение Бернулли для потока вязкой
- 18. Уравнение Бернулли для потока вязкой жидкости.
- 19. Применение уравнения Бернулли при решении технических задач по определению расхода жидкости (расходомер Вентури).
- 20. Применение уравнения Бернулли при решении технических задач по определению скорости течения (трубка Пито).
- 21. Применение уравнения Бернулли при решении технических задач по определению мощности насосной установки.
- 22. Движение шара в идеальной жидкости
- 23. Обращение движения в задачах обтекания тел

2. Понятие турбулентности и основные подходы к описанию турбулентных течений

- 24. Турбулентность
- 25. Уравнения движение турбулентного потока
- 26. Гипотеза Бусинеска
- 27. Турбулентное течение сжимаемой жидкости
- 1. Из жидкости плотности р, заполняющей все пространство, внезапно удаляется сферический объем радиусом а. Определить время в течение которого образовавшаяся полость заполнится жидкостью. На бесконечности поддерживается постоянное давление, внутри полости давление равно нулю.
- 2. Описать плоское радиальное движение по инерции расходящегося концентрического кольца со свободными границами. Найти асимптотику толщины кольца d при $t \to \infty$.
- 3. Конденсатор паровой турбины состоит из 250 трубок для протока охлаждающей воды. Определить максимально допустимый диаметр трубок, обеспечивающий турбулентный режим течения при общем объемном расходе воды через все трубки $Q=100 \text{m}^3/\text{ч}$. Коэффициент кинематической вязкости принять равным $1 \text{ мm}^2/\text{c}$. Предполагается, что устойчивый турбулентный режим течения воды в трубках удерживается при $\text{Re} > 10^4$, то есть при числах Рейнольдса, превышающих критическое значение.

3. Получение новых уравнений переноса из комбинаций уравнений неразрывности, движения и энергии

- 1. Уравнение Лайтхилла
- 2. Трансформация уравнения Навье-Стокса
- 3. Уравнения переноса тензора напряжений Рейнольдса
- 1. Оценить порядок величины изменения скорости данного перемещающегося в пространстве элемента турбулентной жидкости В промежутка времени τ, малого сравнению с характерным временем T_L ~ L/u движения в целом.
- 2. Насадок Борда шириной a симметрично установлен в бесконечно длинный сосуд шириной 5a. доказать, что коэффициент сжатия струи, вытекающей через насадок, равен $5-2\sqrt{5}$.

Составитель (и): Вячкина Е.А., доцент