Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00 471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436 Федеральное государственное бюджетное

образовательное учреждение высшего образования «Кемеровский государственный университет» Новокузнецкий институт (филиал)

Факультет информатики, математики и экономики Кафедра математики, физики и математического моделирования

А.В. Фомина

МАТЕМАТИЧЕСКАЯ ЛОГИКА

Методические рекомендации по изучению дисциплины для обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), Профиль: «Математика и Информатика

Новокузнецк

УДК [378.147.88: 510.6](072) ББК 74.484(2Рос-4Кем)я73+22.12я73 Ф45

Фомина А.В.

Ф45 Математическая логика: методические рекомендации по изучению дисциплины для студентов факультета информатики, математики и экономики, обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), профиль «Математика и Информатика / А.В. Фомина; Новокузнецкий ин-т (фил.) Кемеров. гос. ун-та. – Новокузнецк: НФИ КемГУ, 2020 – 32 с.

В работе изложены методические рекомендации по изучению дисциплины «Математическая логика»: основные теоретические сведения, варианты контрольной работы, методические рекомендации к выполнению контрольной работы, критерии оценки учебной деятельности студента по дисциплине, список основной и дополнительной литературы.

Методические рекомендации предназначены для студентов, обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), профиль «Математика и Информатика»

Рекомендовано на заседании кафедры математики, физики и математического моделирования Протокол № 3 от 22.10.2020

Заведующий каф. МФММ

. / Е.В.Решетникова

Утверждено методической комиссией факультета информатики, математики и экономики

Протокол № 4 от 12.11.2020

Председатель методической комиссии

ФИМЭ /Г.Н.Бойченко

УДК [378.147.88: 510.6](072) ББК 74.484(2Рос-4Кем)я73+22.12я73 Ф45

- © Фомина Анжелла Владимировна
- © Федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет», Новокузнецкий институт (филиал), 2020

Текст представлен в авторской редакции

Оглавление

Огл	іавление	3
	ЕДИСЛОВИЕ	
1.	АЛГЕБРА ВЫСКАЗЫВАНИЙ	5
2.	НОРМАЛЬНЫЕ ФОРМЫ ФОРМУЛІ	ы Алгебры
ВЫ	СКАЗЫВАНИЙ	10
3.	БУЛЕВЫ ФУНКЦИИ	12
4.	АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЯ	Е ЛОГИКИ
ВЫ	СКАЗЫВАНИЙ	15
5.	ЛОГИКА ПРЕДИКАТОВ	16
6.	ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ	19
7.	РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ	контрольной
PAF	БОТЫ	26
8.	критерии оценки учебной д	ЕЯТЕЛЬНОСТИ
CT!	УДЕНТА ПО ДИСЦИПЛИНЕ	30
9.	РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	31

ПРЕДИСЛОВИЕ

Настоящие методические рекомендации адресованы студентам, получающим квалификацию бакалавр по направлению подготовки: 44.03.05 Педагогическое образование (с двумя профилями подготовки), профили: «Математика и Информатика» и направлены на оказание помощи студентам в организации наиболее рационального изучения курса «Математическая логика».

Целью изучения дисциплины «Математическая логика» является формирование математической и логической культуры студента; привитие понимания универсального характера законов логики математических рассуждений, понимания роли и места математической логики в системе наук; развитие абстрактного мышления, общей математической и информационной культуры.

Освоение содержания учебной дисциплины «Математическая логика» обеспечивает достижение студентами следующих результатов:

- формирование систематизированных знаний в области математики и информатики для обеспечения возможности использовать знание современных проблем науки и образования при решении образовательных и профессиональных задач;
- активизация познавательной деятельности и формирование опыта использования методов математической логики в ходе решения практических задач, стимулирование исследовательской деятельности в процессе освоения дисциплины;
 - развитие логического мышления, алгоритмической культуры.

Логика — это наука о законах мышления, одна из древнейших наук. Основные законы логики были сформулированы еще древнегреческим мыслителем Аристотелем. Идеи о построении логики на математической основе были высказаны Лейбницем в начале XVIII века. Современная математическая логика определяется как раздел математики, посвященный изучению математических доказательств и вопросов основания математики. Результаты математической логики находят свое применение в других отраслях математического знания, а также в программировании, проблемах искусственного интеллекта и других науках.

В методические рекомендации включено: основные теоретические сведения, варианты контрольной работы, методические рекомендации к выполнению контрольной работы, примеры решения типовых заданий, критерии оценки учебной деятельности студента, список основной и дополнительной литературы.

Теоретические сведения и приведенные примеры решения некоторых заданий представлены в объеме, достаточном для подготовки к практическим занятиям и выполнения заданий контрольной работы.

Таким образом, данные методические материалы позволяют получить студенту представление о содержании курса "Математическая логика", подготовиться к практическим занятиям по соответствующей теме, успешно выполнить контрольную работу по данной теме.

1. АЛГЕБРА ВЫСКАЗЫВАНИЙ

Высказыванием называется такое утверждение, о котором можно вполне определенно сказать истинно оно или ложно. Условимся значение истинности высказывания обозначать 1, если высказывание истинно, и 0, если высказывание ложно. Высказывания будем обозначать начальными заглавными буквами латинского алфавита A, B, C или A_1 , A_2 , Определим операции над высказываниями.

Отрицанием высказывания A называется высказывание, которое истинно, если высказывание A ложно, и наоборот. Отрицание обозначается \overline{A} или $\neg A$.

Таблица истинности операции отрицания.

A	$\neg A$
0	1
1	0

Конъюнкцией высказываний A и B называется высказывание, которое истинно лишь в единственном случае, когда истинны оба высказывания A и B, и ложно во всех остальных случаях. Обозначается конъюнкция $A \wedge B$.

Таблица истинности операции конъюнкции

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Дизъюнкцией высказываний A и B называется высказывание, которое истинно, если истинно хотя бы одно из высказываний A или B, и ложно в единственном случае, если оба высказывания A и B ложны. Обозначается дизъюнкция $A \lor B$.

Таблица истинности операции дизъюнкции

A	В	$A \vee B$		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Импликацией высказываний A и B называется высказывание, которое ложно в единственном случае, когда A истинно, а B ложно, а во всех остальных случаях истинно. Обозначается импликация $A \rightarrow B$.

Таблица истинности операции импликации

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Эквиваленцией высказываний A и B называется высказывание, которое истинно тогда и только тогда, когда одновременно оба высказывания A и B либо истинны, либо ложны, а в остальных случаях ложно. Обозначается эквиваленция $A \leftrightarrow B$.

Таблица истинности операции эквиваленции

A	В	$A \longleftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Пропозициональными переменными называются переменные, значениями которых являются простые высказывания.

Формулами алгебры высказываний являются:

- 1) пропозициональные переменные;
- 2) если **A** и **B** формулы, то каждое из выражений $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \to B)$ есть формула;
 - 3) других формул, кроме построенных по пп. 1) и 2), нет.

Порядок выполнения операций в формуле определяется их приоритетом. Список логических операций в порядке убывания приоритета: $\neg, \land, \lor, \rightarrow, \leftrightarrow$. Изменение порядка выполнения операций, как и в алгебраических операциях, производится с помощью круглых скобок.

В соответствии с таблицами истинности операций можно построить таблицу истинности формулы. Для этого необходимо:

- 1. Пронумеровать простые высказывания в алфавитном порядке.
- 2. Для каждого элементарного высказывания рассмотреть все возможные наборы значений истинности. Всего возможно 2^n комбинаций, где n число элементарных высказываний. Это количество строк в таблице.
- 3. Пронумеровать сложные высказывания, содержащие одну логическую операцию, затем сложные высказывания, содержащие две логических операции, и т.д., увеличивая сложность высказываний в соответствии с порядком выполнения операций.
- 4. Вычислить значения истинности всех сложных высказываний. Столбец с последним номером будет содержать значение истинности для всей логической формулы.

Формулы **A** и **B** называются *эквивалентными* или *равносильными* (обозначается $A \cong B$), если при любых значениях пропозициональных переменных значение формулы **A** совпадает со значением формулы **B**.

Примеры равносильных формул:

- 1. $A \lor \neg A \cong 1$, $A \land \neg A \cong 0$;
- 2. $A \lor 1 \cong 1$, $A \land 1 \cong A$;
- 3. $A \lor 0 \cong A$, $A \land 0 \cong 0$.

Формула называется *выполнимой*, если существует такой набор значений переменных, при которых эта формула превращается в истинное высказывание.

Формула называется *опровержимой*, если существует такой набор значений переменных, при которых эта формула превращается в ложное высказывание.

Формула называется *тождественно истинной* или *тавтологией*, если эта формула принимает истинное значение при всех наборах значений переменных.

Формула называется *тождественно ложной* или *противоречием*, если эта формула принимает ложное значение при всех наборах значений переменных.

Следующие формулы алгебры высказываний являются тавтологиями:

- 1. Закон исключенного третьего: $X \vee \neg X$.
- 2. Закон отрицания противоречия: $\neg (X \land \neg X)$.
- 3. Закон двойного отрицания: $\neg \neg X \leftrightarrow X$.
- 4. Закон тождества: $X \rightarrow X$.
- 5. Закон котрапозиции: $(X \to Y) \leftrightarrow (\neg Y \to \neg X)$.
- 6. Закон силлогизма (правило цепного заключения): $\big((X \to Y) \land (Y \to Z)\big) \to \big(X \to Z\big).$
 - 7. Закон противоположности: $(X \leftrightarrow Y) \leftrightarrow (\neg X \leftrightarrow \neg Y)$.
- 8. Правило добавления антецедента («истина из чего угодно»): $X \to (Y \to X)$.
 - 9. Правило «из ложного что угодно»: $\neg X \rightarrow (X \rightarrow Y)$.

- 10. Правило модус поненс (modus ponens): $(X \land (X \rightarrow Y)) \rightarrow Y$.
- 11. Правило модус толленс (modus tollens): $\big(\big(X \to Y \big) \wedge \neg Y \big) \to \neg X.$
- 12. Правило перестановки посылок: $\big(X \to \big(Y \to Z\big)\big) \! \longleftrightarrow \! \big(Y \to \big(X \to Z\big)\big).$
- 13. Правило объединения посылок: $\big(X \! \to \! \big(Y \! \to \! Z \big) \big) \! \leftrightarrow \! \big(\big(X \wedge Y \big) \! \to \! Z \big).$
- 14. Правило разбора случаев: $\big(\!\big(X \!\to\! Z\big) \!\land\! \big(\!\!\big(X \!\to\! Z\big)\!\!\big) \!\leftrightarrow\! \big(\!\!\big(X \!\vee\! Y\big) \!\to\! Z\big).$
- 15. Правило приведения к абсурду: $\big(\big(\neg X \to Y \big) \land \big(\neg X \to \neg Y \big) \big) \to X; \ \big(\neg X \to \big(Y \land \neg Y \big) \big) \to X.$

Следующие формулы алгебры высказываний являются тавтологиями (свойства конъюнкции и дизъюнкции):

- 1. Законы идемпотентности: $(X \wedge X) \leftrightarrow X$, $(X \vee X) \leftrightarrow X$.
- 2. Законы упрощения: $(X \wedge Y) \rightarrow X$, $X \rightarrow (X \vee Y)$.
- 3. Законы коммутативности: $(X \wedge Y) \leftrightarrow (Y \wedge X)$, $(X \vee Y) \leftrightarrow (Y \vee X)$.
- 4. Законы ассоциативности: $(X \wedge (Y \wedge Z)) \leftrightarrow ((X \wedge Y) \wedge Z)$, $(X \vee (Y \vee Z)) \leftrightarrow ((X \vee Y) \vee Z)$.
- 5. Законы дистрибутивности: $(X \land (Y \lor Z)) \leftrightarrow ((X \land Y) \lor (X \land Z)),$

$$(X \vee (Y \wedge Z)) \leftrightarrow ((X \vee Y) \wedge (X \vee Z)).$$

- 6. Законы поглощения: $(X \land (X \lor Y)) \leftrightarrow X$, $(X \lor (X \land Y)) \leftrightarrow X$.
- 7. Законы де Моргана: $\neg(X \land Y) \leftrightarrow (\neg X \lor \neg Y)$, $\neg(X \lor Y) \leftrightarrow (\neg X \land \neg Y)$.

Следующие формулы алгебры высказываний являются тавтологиями (выражение одних логических операций через другие):

1.
$$(X \rightarrow Y) \leftrightarrow (\neg X \lor Y)$$
;

2.
$$(X \rightarrow Y) \leftrightarrow \neg (X \land \neg Y)$$
;

3.
$$(X \wedge Y) \leftrightarrow \neg (\neg X \vee \neg Y)$$
;

4.
$$(X \wedge Y) \leftrightarrow \neg (X \rightarrow \neg Y)$$
;

5.
$$(X \lor Y) \leftrightarrow \neg (\neg X \land \neg Y);$$

6.
$$(X \lor Y) \leftrightarrow (\neg X \to Y)$$
;

7.
$$(X \leftrightarrow Y) \leftrightarrow ((X \to Y) \land (Y \to X))$$
.

2. НОРМАЛЬНЫЕ ФОРМЫ ФОРМУЛЫ АЛГЕБРЫ ВЫСКАЗЫВАНИЙ

Конъюнктивным одночленом от переменных $x_1, x_2, ..., x_n$ называется конъюнкция этих переменных или их отрицаний.

Дизъюнктивным одночленом от переменных $x_1, x_2, ..., x_n$ называется дизъюнкция этих переменных или их отрицаний.

Дизъюнктивной нормальной формой называется дизъюнкция конъюнктивных одночленов, т.е. выражение вида $K_1 \vee K_2 \vee ... \vee K_p$, где все K_i , i=1,2,...,p являются конъюнктивными одночленами.

Конъюнктивной нормальной формой называется конъюнкция дизъюнктивных одночленов, т.е. выражение вида $D_1 \vee D_2 \vee ... \vee D_q$, где все D_i , i=1,2,...,q являются дизъюнктивными одночленами.

Одночлен (конъюнктивный или дизъюнктивный) от переменных $x_1, x_2, ..., x_n$ называется *совершенным*, если в него от каждой пары x_i , $-x_i$ (i=1,2,...,n) входит точно одна буква.

Нормальная форма (дизъюнктивная или конъюнктивная) от переменных $x_1, x_2, ..., x_n$ называется *совершенной* от этих переменных, если в нее входят лишь совершенные одночлены (конъюнктивные или дизъюнктивные соответственно) от переменных $x_1, x_2, ..., x_n$.

Рассмотрим представление формул алгебры высказываний совершенными дизъюнктивными нормальными формами. Введем обозначение: $x^{\alpha} = \begin{cases} x, \alpha = 1, \\ \neg x, \alpha = 0 \end{cases}$; тогда $0^{0} = 1; 0^{1} = 0; 1^{0} = 0; 1^{1} = 1$. Таким образом, $x^{\alpha} = 1 \Leftrightarrow x = \alpha; \ x^{\alpha} = 0 \Leftrightarrow x \neq \alpha.$

Обозначим:
$$\bigvee_{i=1}^{n} x_i = x_1 \lor x_2 \lor ... \lor x_n$$
.

Пример.

$$\bigvee_{(\alpha,\beta)} (x^{\alpha} \wedge y^{\beta}) = (x^{0} \wedge y^{0}) \vee (x^{0} \wedge y^{1}) \vee (x^{1} \wedge y^{0}) \vee (x^{1} \wedge y^{1}) = (\neg x \wedge \neg y) \vee (\neg x \wedge y) \vee (x \wedge \neg y) \vee (x \wedge y).$$

Способ отыскания совершенной дизъюнктивной нормальной формы для данной формулы:

- 1. Выбрать все те наборы значений переменных, на которых формула принимает значение 1.
- 2. Для каждого такого набора выписать совершенный конъюнктивный одночлен, принимающий значение 1 на этом наборе.
- 3. Полученные совершенные конъюнктивные одночлены соединить знаками дизъюнкции.

Рассмотрим представление формул алгебры высказываний совершенными конъюнктивными нормальными формами. Введем обозначение: $x^{\beta} = \begin{cases} \neg x, \beta = 1, \\ x, \beta = 0 \end{cases}$; тогда $0^{0} = 0; 0^{1} = 1; 1^{0} = 1; 1^{1} = 0$. Таким образом, $x^{\beta} = 1 \Leftrightarrow x \neq \beta; \ x^{\beta} = 0 \Leftrightarrow x = \beta.$

Обозначим:
$$\bigwedge_{i=1}^{n} x_i = x_1 \wedge x_2 \wedge ... \wedge x_n$$
.

Пример.

$$\bigwedge_{(\alpha,\beta)} (x^{\alpha} \vee y^{\beta}) = (x^{0} \vee y^{0}) \wedge (x^{0} \vee y^{1}) \wedge (x^{1} \vee y^{0}) \wedge (x^{1} \vee y^{1}) = (x \vee y) \wedge (x \vee y) \wedge (x \vee y) \wedge (x \vee y).$$

Способ отыскания совершенной конъюнктивной нормальной формы для данной формулы:

- 1. Выбрать все те наборы значений переменных, на которых формула принимает значение 0.
- 2. Для каждого такого набора выписать совершенный дизьюнктивный одночлен, принимающий значение 0 на этом наборе.
- 3. Полученные совершенные дизъюнктивные одночлены соединить знаками конъюнкции.

3. БУЛЕВЫ ФУНКЦИИ

Булевой функцией от одного аргумента называется функция f, заданная на множестве из двух элементов и принимающая значения в двухэлементном множестве: $f:\{0,1\} \to \{0,1\}$.

Рассмотрим булевы функции от одного аргумента.

x	$f_0(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$
0	0	0	1	1
1	0	1	0	1

 $f_0(x) = 0$ – тождественный ноль;

 $f_1(x) = x$ – тождественная функция;

 $f_2(x) = x'$ – отрицание;

 $f_3(x) = 1$ -тождественная единица.

Булевой функцией от двух аргументов называется функция g, заданная на множестве $\{0,1\} \times \{0,1\}$ и принимающая значения в двухэлементном множестве: $f: \{0,1\} \times \{0,1\} \to \{0,1\}$.

Рассмотрим булевы функции от двух аргументов.

аргу	мен	булевы функции															
T	Ы																
		0		\rightarrow'	х	←′	у	+	V	\downarrow	\leftrightarrow	y'	\leftarrow	x'	\rightarrow		1
\mathcal{X}	У																
		g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Приведем булевы функции, сгруппировав их в пары по принципу, что одна из функций в паре является отрицанием другой.

1. $g_0(x,y) = 0$ – тождественный ноль; $g_{15}(x,y) = 1$ – тождественная единица.

2. $g_1(x,y) = x \cdot y$ – конъюнкция; $g_{14}(x,y) = x \mid y$ – отрицание конъюнкции (штрих Шеффера).

- 3. $g_{13}(x,y) = x \to y$ импликация; $g_2(x,y) = (x \to y)'$ отрицание импликации.
 - 4. $g_3(x, y) = x$; $g_{12}(x, y) = x'$.
- 5. $g_{11}(x,y) = y \to x$ антиимпликация; $g_4(x,y) = (y \to x)'$ отрицание антиимпликации.
 - 6. $g_5(x, y) = y$; $g_{10}(x, y) = y'$.
- 7. $g_9(x,y) = x \leftrightarrow y$ эквивалентность; $g_6(x,y) = x + y$ отрицание эквивалентности (сложение по модулю 2 или сумма Жегалкина).
- 8. $g_7(x,y) = x \lor y$ дизъюнкция; $g_8(x,y) = (x \lor y)' = x \downarrow y$ стрелка Пирса.

Свойства дизъюнкции, конъюнкции и отрицания.

- 1. Идемпотентность дизъюнкции и конъюнкции: $x \lor x = x$; $x \cdot x = x$.
- 2. Коммутативность дизьюнкции и конъюнкции: $x \lor y = y \lor x$; $x \cdot y = y \cdot x$.
- 3. Ассоциативность конъюнкции и дизъюнкции: $(x \lor y) \lor z = x \lor (y \lor z); (x \cdot y) \cdot z = x \cdot (y \cdot z).$
 - 4. $x \lor 1 = 1; x \cdot 1 = x$.
 - 5. $x \lor 0 = x$; $x \cdot 0 = 0$.
- 6. Дистрибутивность дизъюнкции относительно конъюнкции и конъюнкции относительно дизъюнкции: $x \lor (y \cdot z) = (x \lor y) \cdot (x \lor z);$ $x \cdot (y \lor z) = (x \cdot y) \lor (x \cdot z).$
 - 7. Законы поглощения: $x \lor (y \cdot x) = x$; $x \cdot (y \lor x) = x$.
 - 8. Законы де Моргана: $(x \lor y)' = x' \cdot y'; (x \cdot y)' = x' \lor y'.$
 - 9. $x \lor x' = 1; x \cdot x' = 0.$
 - 10. x'' = x.

Выражение одних булевых функций через другие.

- 1. $x \cdot y = (x' \vee y')';$
- 2. $x \lor y = (x' \cdot y')';$
- 3. $x \lor y = (x \to y) \to y;$
- $4. \qquad x \lor y = x' \to y;$

- 5. $x \rightarrow y = x' \lor y$;
- 6. $x \leftrightarrow y = (x \to y) \cdot (y \to x);$
- 7. $x' = x \mid x;$
- 8. $x \mid y = (x \cdot y)';$
- 9. $x \lor y = x' | y' = (x | x) | (y | y);$
- 10. $x' = x \downarrow x$;
- 11. $x \downarrow y = (x \lor y)';$
- 12. $x \cdot y = x' \downarrow y' = (x \downarrow x) \downarrow (y \downarrow y)$.

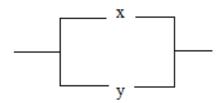
Применение булевых функций к релейно-контактным схемам.

Под релейно-контактной схемой понимается устройство из проводников и двухпозиционных контактов. Каждая релейно-контактная схема, в которой занято n независимых реле, определяет некоторую булеву функцию от n аргументов. Она принимает значение 1 на тех наборах значений переменных $x_1, x_2, ..., x_n$, которые соответствуют тем состояниям реле $x_1, x_2, ..., x_n$, при которых данная схема проводит электрический ток. Такая булева функция $y = f(x_1, x_2, ..., x_n)$ называется функцией проводимости данной релейно-контактной схемы.

Рассмотрим схему, которая состоит из двух последовательно соединенных контактов x и y, которая проводит электрический ток, когда оба контакта x и y замкнуты, т.е. когда обе переменные x и y принимают значение 1.

Булева функция, удовлетворяющая такому условию – конъюнкция: $f(x, y) = x \cdot y$.

Другая схема состоит из двух параллельно соединенных контактов x и y.



Она проводит электрический ток, когда по меньшей мере один из контактов замкнут, т.е. когда хотя бы одна из булевых переменных х или

у принимает значение 1. Булева функция, удовлетворяющая такому условию – дизъюнкция: $f(x, y) = x \lor y$.

Две релейно-контактные схемы называются *равносильными*, если одна из них проводит ток тогда и только тогда, когда другая схема проводит ток, т.е. если они обладают одинаковыми функциями проводимости.

4. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ЛОГИКИ ВЫСКАЗЫВАНИЙ

К первоначальным, неопределяемым понятиям аксиоматической теории высказываний относятся следующие: $x_1, x_2, ..., x_n$ пропозициональные переменные; $\neg, \rightarrow -$ логические связки; (,) - технические знаки.

Первоначальным понятием является также понятие формулы:

- 1. каждая пропозициональная переменная является формулой;
- 2. если F_1 и F_2 формулы, то выражения $\neg F_1$, $(F_1 \to F_2)$ также являются формулами;
- 3. никаких других формул, кроме получающихся согласно пунктам 1 и 2 нет.

Следующий шаг в построении аксиоматической теории высказываний – выбор системы аксиом. В качестве аксиом выбираются формулы следующих видов:

$$(A_{1}): (F \to (G \to F)),$$

$$(A_{2}): ((F \to (G \to H)) \to ((F \to G) \to (F \to H))),$$

$$(A_{3}): ((\neg G \to \neg F) \to ((\neg G \to F) \to G)),$$

где F, G, H — произвольные формулы.

Заключительный шаг в построении аксиоматической теории высказываний — выбор правил вывода. Единственным правилом вывода служит правило заключения (modus ponens): из формул F и $F \to G$ непосредственно следует формула G .

Доказательством или **выводом** формулы F из множества формул Γ называется такая конечная последовательность $B_1, B_2, ..., B_s$ формул,

каждая формула которой является либо аксиомой, либо формулой из Γ , либо получена из двух предыдущих формул этой последовательности по правилу modus ponens, а последующая формула B_s совпадает с F .

Если имеется вывод формулы F из множества Γ , то говорят, что F выводима из Γ , обозначают $\Gamma \vdash F$. Элементы из Γ называются *гипотезами* или *посылками вывода*. Если имеется вывод формулы F из пустого множества гипотез, то говорят, что F выводима из аксиом или что F доказуема, а последовательность $B_1, B_2, ..., B_s$ называется доказательством этой формулы. Саму F называют теоремой и записывают $\vdash F$.

Совокупность аксиом, правил вывода и всех теорем, выводимых из аксиом, представляют собой *аксиоматическую теорию высказываний* или формализованное исчисление высказываний.

5. ЛОГИКА ПРЕДИКАТОВ

п-местным предикатом $P(x_1, x_2, ..., x_n)$, определенным на множествах $M_1, M_2, ..., M_n$, называется предложение, содержащее n переменных $x_1, x_2, ..., x_n$, превращающееся в высказывание при подстановке вместо этих переменных любых конкретных элементов из множеств $M_1, M_2, ..., M_n$ соответственно.

Предикат $P(x_1, x_2, ..., x_n)$, заданный на множествах $M_1, M_2, ..., M_n$, называется:

- 1) **тождественно истинным**, если при любой подстановке вместо переменных $x_1, x_2, ..., x_n$ любых конкретных предметов $a_1, a_2, ..., a_n$ из множеств $M_1, M_2, ..., M_n$ он превращается в истинное высказывание $P(a_1, a_2, ..., a_n)$;
- 2) **тождественно ложным**, если при любой подстановке вместо переменных $x_1, x_2, ..., x_n$ любых конкретных предметов $a_1, a_2, ..., a_n$ из множеств $M_1, M_2, ..., M_n$ он превращается в ложное высказывание $P(a_1, a_2, ..., a_n)$;
- 3) **выполнимым** (**опровержимым**), если существует по крайней мере один набор предметов $a_1, a_2, ..., a_n$ из множеств $M_1, M_2, ..., M_n$, при подстановке которого вместо соответствующих предметных переменных

в предикат $P(x_1, x_2, ..., x_n)$, последний превращается в истинное (ложное) высказывание $P(a_1, a_2, ..., a_n)$.

Множеством истинности предиката $P(x_1, x_2, ..., x_n)$, заданного $M_1, M_2, ..., M_n$, называется совокупность множествах на n-систем $(a_1, a_2, ..., a_n)$, упорядоченных которых $a_1 \in M_1, a_2 \in M_2, ..., a_n \in M_n$, таких, что данный предикат обращается в истинное высказывание $P(a_1, a_2, ..., a_n)$ при подстановке $x_1 = a_1, x_2 = a_2, ..., x_n = a_n$. Это множество обозначается т.е. $P^{+} = \{(a_{1}, a_{2}, ..., a_{n}) | P(a_{1}, a_{2}, ..., a_{n}) = 1\}.$

n - местный предикат $P(x_1, x_2, ..., x_n)$, заданный на множествах $M_1, M_2, ..., M_n$, будет:

- 1) тождественно истинным тогда и только тогда, когда $P^{+} = M_{1} \times M_{2} \times ... \times M_{n};$
 - 2) тождественно ложным тогда и только тогда, когда $P^{+} = \emptyset$;
 - 3) выполнимым тогда и только тогда, когда $P^+ \neq \emptyset$;
- 4) опровержимым тогда и только тогда, когда $P^+ \neq M_1 \times M_2 \times ... \times M_n.$

Два п-местных предиката $P(x_1,x_2,...,x_n)$ и $Q(x_1,x_2,...,x_n)$, заданных над одними и теми же множествами $M_1,M_2,...,M_n$, называются ${\it равносильными}$ тогда и только тогда, когда совпадают их множества истинности: $P^+ = Q^+$. Обозначение: $P \Leftrightarrow Q$.

Предикат $Q(x_1,x_2,...,x_n)$, заданный над множествами $M_1,M_2,...,M_n$, называется *следствием* предиката $P(x_1,x_2,...,x_n)$, заданного над теми же множествами, тогда и только тогда, когда $P^+ \subseteq Q^+$. Обозначение: $P \Rightarrow Q$.

Рассмотрим логические операции над предикатами.

Отрицанием *п*-местного предиката $P(x_1, x_2, ..., x_n)$, определенного на множествах $M_1, M_2, ..., M_n$, называется новый *п*-местный предикат $\neg P(x_1, x_2, ..., x_n)$, определенный на тех же множествах (читается «неверно, что $P(x_1, x_2, ..., x_n)$ »), который превращается в истинное высказывание

при всех тех значениях предметных переменных, при которых исходное высказывание превращается в ложное высказывание.

Конъюнкцией n-местного предиката $P(x_1, x_2, ..., x_n)$, определенного на множествах $M_1, M_2, ..., M_n$, и m-местного предиката $Q(y_1, y_2, ..., y_m)$, определенного на множествах $N_1, N_2, ..., N_m$, называется новый (n+m)-местный предикат, определенный на множествах $M_1, M_2, ..., M_n$, $N_1, N_2, ..., N_m$, обозначаемый $P(x_1, x_2, ..., x_n) \wedge Q(y_1, y_2, ..., y_m)$ (читается « $P(x_1, x_2, ..., x_n)$ и $Q(y_1, y_2, ..., y_m)$ »), который превращается в истинное высказывание при всех тех и только тех значениях предметных переменных, при которых оба исходных предиката превращаются в истинные высказывания.

Дизъюнкцией n-местного предиката $P(x_1, x_2, ..., x_n)$, определенного на множествах $M_1, M_2, ..., M_n$, и m-местного предиката $Q(y_1, y_2, ..., y_m)$, определенного на множествах $N_1, N_2, ..., N_m$, называется новый (n+m)-местный предикат, определенный на множествах $M_1, M_2, ..., M_n$, $N_1, N_2, ..., N_m$, обозначаемый $P(x_1, x_2, ..., x_n) \vee Q(y_1, y_2, ..., y_m)$ (читается $P(x_1, x_2, ..., x_n)$ или $Q(y_1, y_2, ..., y_m)$ »), который превращается в истинное высказывание при всех тех и только тех значениях предметных переменных, при которых в истинное высказывание превращается по меньшей мере один из исходных предикатов.

Импликацией n-местного предиката $P(x_1,x_2,...,x_n)$, определенного на множествах $M_1,M_2,...,M_n$, и m-местного предиката $Q(y_1,y_2,...,y_m)$, определенного на множествах $N_1,N_2,...,N_m$, называется новый (n+m)-местный предикат, определенный на множествах $M_1,M_2,...,M_n$, $N_1,N_2,...,N_m$, обозначаемый $P(x_1,x_2,...,x_n) \to Q(y_1,y_2,...,y_m)$ (читается «из $P(x_1,x_2,...,x_n)$ следует $Q(y_1,y_2,...,y_m)$ »), который превращается в ложное высказывание при всех тех и только тех значениях предметных переменных, при которых предикат $P(x_1,x_2,...,x_n)$ превращается в истинное высказывание, а предикат $Q(y_1,y_2,...,y_m)$ превращается в ложное высказывание.

Аналогично определяется *эквиваленция* двух предикатов. При этом эквиваленция двух предикатов тождественно истинна тогда и только тогда, когда исходные предикаты равносильны.

Рассмотрим кванторные операции над предикатами.

Операцией *связывания квантором общности* называется правило, по которому каждому одноместному предикату P(x), определенному на множестве M, сопоставляется высказывание, обозначаемое $(\forall x)(P(x))$ (читается: «для всякого [значения] x P(x)»), которое истинно в том и только в том случае, когда предикат P(x) тождественно истинен, и ложно в противоположном случае, т.е.

$$(\forall x)(P(x)) = \begin{cases} 1, \, ecлu \, P(x) - moж дественно истинный предикат; \\ 0, \, ecлu \, P(x) - onpoвержимый предикат. \end{cases}$$

Символ $\forall x$ также называют *квантором общности* по переменной x.

Операцией *связывания квантором существования* называется правило, по которому каждому одноместному предикату P(x), определенному на множестве M, сопоставляется высказывание, обозначаемое $(\exists x)(P(x))$ (читается: «существует [значение] x такое, что P(x)», которое ложно в том и только в том случае, когда предикат P(x) тождественно ложен, и истинно в противоположном случае, т.е.

$$(\exists x)(P(x)) = \begin{cases} 0, ecnu \ P(x) - moж дественно ложный предикат; \\ 1, ecnu \ P(x) - выполнимый предикат. \end{cases}$$

Символ $\exists x$ также называют *квантором существования* по переменной x.

6. ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант 1

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = ((X \to \neg Y) \lor Z) \land (\neg (X \land Y) \leftrightarrow \neg Z),$$

$$G(X,Y,Z) = (X \land Y \land Z) \lor ((X \to \neg Y) \land \neg Z).$$

2. Докажите, что следующая формула являются тавтологией алгебры высказываний:

$$(((P \land Q) \rightarrow R) \land (\neg R \rightarrow Q)) \rightarrow (P \rightarrow R).$$

конъюнктивной нормальной форме.

- 3. Формулу $F(X,Y,Z) = ((X \to \neg Y) \lor Z) \land (\neg (X \land Y) \leftrightarrow \neg Z),$ равносильными преобразованиями приведите сначала к совершенной дизьюнктивной нормальной форме, а затем к совершенной
- 4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных:

$$F(0,0,1,1) = F(1,0,0,1) = F(0,1,0,0) = F(0,0,1,0) = 1.$$

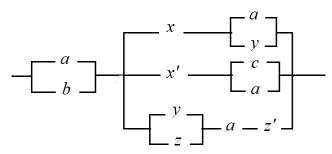
5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных:

$$F(0,0,1,1) = F(1,0,0,1) = F(0,1,0,0) = F(0,0,1,0) = 0.$$

- 6. В университете проходит чемпионат по настольному теннису среди девушек. Болельщики высказывают свои предположения о будущих победителях.
 - Первой будет Надежда, а Марина второй, сказал Семен.
- Нет, Лариса займет второе место, а Регина будет четвертой, возразил Владислав.
 - Второй будет Надежда, а Регина третьей, заявил Тимур.

Когда чемпионат закончился, оказалось, что каждый из молодых людей ошибся только один раз. Какие места в соревнованиях заняли Надежда, Марина, Лариса и Регина?

7. Упростите релейно-контактную схему:



Вариант 2

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = (\neg(X \leftrightarrow (Y \lor \neg Z)) \land \neg X) \to (\neg(X \lor \neg Y) \leftrightarrow Z),$$

$$G(X,Y,Z) = X \lor (Y \to Z).$$

2. Докажите, что следующая формула являются тавтологией алгебры высказываний:

$$((P \to R) \land (Q \to S) \land (\neg R \lor \neg S)) \to (\neg P \lor \neg Q).$$

3. Формулу

$$F(X,Y,Z) = (\neg(X \leftrightarrow (Y \lor \neg Z)) \land \neg X) \rightarrow (\neg(X \lor \neg Y) \leftrightarrow Z),$$

равносильными преобразованиями приведите сначала к совершенной дизьюнктивной нормальной форме, а затем к совершенной конъюнктивной нормальной форме.

4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных:

$$F(1,0,0,0) = F(0,1,0,0) = F(0,0,1,0) = F(0,0,0,1) = F(0,1,1,0) = 1.$$

5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных:

$$F(1,0,0,0) = F(0,1,0,0) = F(0,0,1,0) = F(0,0,0,1) = F(0,1,1,0) = 0.$$

6. Четыре студентки — Анна, Белла, Кристина и Диана — закончили между собой соревнования по бегу. На вопрос, кто какое место занял, были получены следующие высказывания:

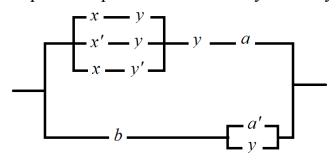
«Анна победила, а Белла заняла второе место».

«Анна заняла второе место, а Кристина - третье».

«Диана заняла второе место, а Кристина – четвертое».

Как выяснилось позднее, в каждом из высказываний одно утверждение правильно, а другое ложно. Какое место заняла каждая из девушек?

7. Упростите релейно-контактную схему:



Вариант 3

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = \neg (((\neg Y \lor \neg Z) \leftrightarrow X) \land (\neg X \land (Y \to \neg Z))),$$

$$G(X,Y,Z) = (X \land Y \land Z) \lor \neg X \lor (X \land \neg Y) \lor (X \land Y \land \neg Z).$$

2. Докажите, что следующая формула являются тавтологией алгебры высказываний:

$$((P \to Q) \land (R \to S) \land (P \lor R) \land \neg (Q \land S)) \to ((Q \to P) \land (S \to R)).$$

- 3. Формулу $F(X,Y,Z) = \neg (((\neg Y \lor \neg Z) \leftrightarrow X) \land (\neg X \land (Y \to \neg Z))),$ равносильными преобразованиями приведите сначала к совершенной дизъюнктивной нормальной форме, а затем к совершенной конъюнктивной нормальной форме.
- 4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных:

$$F(1,1,1,0) = F(1,1,0,1) = F(1,0,1,1) = F(0,1,1,1) = F(1,0,0,1) = 1.$$

5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных:

$$F(1,1,1,0) = F(1,1,0,1) = F(1,0,1,1) = F(0,1,1,1) = F(1,0,0,1) = 0.$$

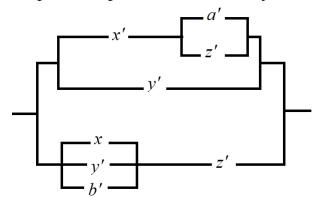
6. На соревнованиях по биатлону было высказано два прогноза о местах, которые займут спортсмены Ильин, Панин и Седов, претендующие на призовые места:

«Седов будет первым, Ильин – вторым, а Панин - третьим».

«Победит Ильин, Панин придет вторым, а Седов будет третьим».

После окончания соревнования оказалось, что эти спортсмены заняли три первых места, но оба предсказания оказались ложными. Ни в одном из предсказаний ни одно из мест не было названо правильно. Какое место занял каждый из спортсменов?

7. Упростите релейно-контактную схему:



Вариант 4

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = \neg (\neg X \leftrightarrow ((Y \lor \neg Z) \to \neg (X \lor \neg Y))),$$

$$G(X,Y,Z) = ((\neg X \land \neg Z) \lor (X \land Z)) \land \neg Y.$$

2. Докажите, что следующая формула являются тавтологией алгебры высказываний:

$$((P \to Q) \land (R \to S) \land (P \lor R)) \to (Q \lor S).$$

3. Формулу
$$F(X,Y,Z) = \neg (\neg X \leftrightarrow ((Y \lor \neg Z) \rightarrow \neg (X \lor \neg Y))),$$

равносильными преобразованиями приведите сначала к совершенной дизьюнктивной нормальной форме, а затем к совершенной конъюнктивной нормальной форме.

4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных:

$$F(1,1,0,0) = F(1,0,0,1) = F(0,0,1,1) = F(1,0,1,0) = F(0,1,0,1) = F(1,1,1,1) = 1.$$

5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных:

$$F(1,1,0,0) = F(1,0,0,1) = F(0,0,1,1) = F(1,0,1,0) = F(0,1,0,1) = F(1,1,1,1) = 0.$$

6. Четыре футбольные команды «Арсенал», «Волга», «Спартак» и «Металлург» - в чемпионате России заняли четыре первых места, причем ни одно место не было разделено между командами. О занятых командами местах получены три высказывания:

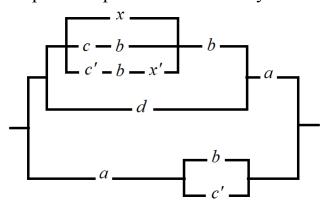
«Второе место занял «Спартак», а «Металлург» третье».

«Победителем вышел «Спартак», «Волга» была вторая».

«Второе место занял «Арсенал», а «Металлург» был последним».

Какое место заняла каждая команда, если известно, что в каждом из высказываний одно утверждение верно, а другое ложно?

7. Упростите релейно-контактную схему:



Вариант 5

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = ((X \land (Y \to Z)) \lor \neg (X \lor \neg Z)) \leftrightarrow \neg (\neg Y \leftrightarrow Z),$$

$$G(X,Y,Z) = \neg (X \to Z) \lor Y.$$

2. Докажите, что следующая формула являются тавтологией алгебры высказываний:

$$(P \to Q) \to ((R \to \neg Q) \to (((S \to \neg P) \to R) \to ((\neg T \lor P) \to (T \to S)))).$$

3. Формулу

$$F(X,Y,Z) = ((X \land (Y \rightarrow Z)) \lor \neg (X \lor \neg Z)) \leftrightarrow \neg (\neg Y \leftrightarrow Z),$$

равносильными преобразованиями приведите сначала к совершенной дизьюнктивной нормальной форме, а затем к совершенной конъюнктивной нормальной форме.

4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных:

$$F(0,0,0,0) = F(1,0,1,1) = F(0,0,0,1) = F(1,0,0,0) = F(1,1,1,1) = F(0,1,1,0) = 1.$$

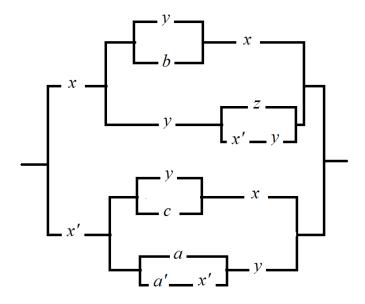
5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных:

$$F(0,0,0,0) = F(1,0,1,1) = F(0,0,0,1) = F(1,0,0,0) = F(1,1,1,1) = F(0,1,1,0) = 0.$$

- 6. Перед началом забегов на спринтерскую дистанцию зрители легкоатлетических соревнований обсуждали возможных победителей.
 - Победит или Абрамов, или Суханов, сказал один болельщик.
- Если Абрамов будет вторым, то первым будет Волков, сказал другой болельщик.
- Нет, вторым будет или Волков, или Абрамов, возразил третий болельщик.
- Если Абрамов будет третьим, то Суханов не победит, вмешался четвертый болельщик.

После соревнований выяснилось, что Абрамов, Волков и Суханов – заняли три призовых места, не деля между собой ни одного из мест, и что все четыре предсказания были правильными. Как закончились соревнования по спринтерскому бегу?

7. Упростите релейно-контактную схему:



7. РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

1. Составив таблицы истинности, выясните, равносильны ли следующие формулы алгебры высказываний:

$$F(X,Y,Z) = (X \to Z) \to ((X \lor Y) \to (Z \lor Y)),$$

$$G(X,Y,Z) = (X \to (Y \to Z)) \leftrightarrow (Y \to (X \to Z)).$$

Решение:

Составим таблицы истинности для заданных формул алгебры высказываний.

X	Y	Z	$X \to Z$	$X \vee Y$	$Z \vee Y$	$(X \lor Y) \to (Z \lor Y)$	F(X,Y,Z)
0	0	0	1	0	0	1	1
0	0	1	1	0	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

X	Y	Z	$Y \rightarrow Z$	$X \to (Y \to Z)$	$X \to Z$	$Y \to (X \to Z)$	G(X,Y,Z)		
0	0	0	1	1	1	1	1		
0	0	1	1	1	1				
0	1	0	0	1	1	1	1		
0	1	1	1	1	1	1	1		
1	0	0	1	1	0	1	1		
1	0	1	1	1	1	1	1		
1	1	0	0	0	0	0	1		
1	1	1	1	1	1	1	1		

Видим, что в последних столбцах таблиц значения формул F(X,Y,Z) и G(X,Y,Z) совпадают, следовательно, формулы являются равносильными. Кроме того, все значения в этих столбцах равны 1, значит, формулы являются тавтологиями.

2. Докажите, что следующая формула являются тавтологией алгебры высказываний: $((X \to Y) \to X) \to X$.

Решение:

$$((X \to Y) \to X) \to X \cong (\neg(X \to Y) \lor X) \to X \cong$$

$$\cong \neg(\neg(\neg X \lor Y) \lor X) \lor X \cong \neg((X \land \neg Y) \lor X) \lor X \cong$$

$$\cong (\neg(X \land \neg Y) \land \neg X) \lor X \cong ((\neg X \lor Y) \land \neg X) \lor X \cong$$

$$\cong \neg X \lor X \cong 1.$$

3. Формулу $F(X,Y,Z) = (\neg X \lor Z) \land (Y \lor Z)$ равносильными преобразованиями приведите сначала к совершенной дизъюнктивной нормальной форме, а затем к совершенной конъюнктивной нормальной форме.

Решение:

Сначала приведем данную формулу к совершенной дизъюнктивной нормальной форме.

$$F(X,Y,Z) = (\neg X \lor Z) \land (Y \lor Z) \cong (\neg X \land Y) \lor Z \cong (\neg X \land Y \land 1) \lor (Z \land 1) \cong$$

$$\cong (\neg X \land Y \land (Z \lor \neg Z)) \lor (Z \land (X \lor \neg X)) \cong (\neg X \land Y \land Z) \lor (\neg X \land Y \land \neg Z) \lor$$

$$\lor (Z \land X \land 1) \lor (Z \land \neg X \land 1) \cong (\neg X \land Y \land Z) \lor (\neg X \land Y \land \neg Z) \lor$$

$$\lor (Z \land X \land (Y \lor \neg Y)) \lor (Z \land \neg X \land (Y \lor \neg Y)) \cong (\neg X \land Y \land Z) \lor$$

$$\lor (\neg X \land Y \land \neg Z) \lor (Z \land X \land Y) \lor (Z \land X \land \neg Y) \lor (Z \land \neg X \land Y) \lor$$

$$(Z \land \neg X \land \neg Y) \cong (X \land Y \land Z) \lor (\neg X \land Y \land Z) \lor (X \land \neg Y \land Z) \lor$$

$$\lor (\neg X \land \neg Y \land Z) \lor (\neg X \land Y \land \neg Z).$$

Приведем данную формулу к совершенной конъюнктивной нормальной форме.

$$F(X,Y,Z) = (\neg X \lor Z) \land (Y \lor Z) \cong (\neg X \lor Z \lor 0) \land (Y \lor Z \lor 0) \cong$$

$$\cong (\neg X \lor Z \lor (Y \land \neg Y)) \land (Y \lor Z \lor (X \land \neg X)) \cong (\neg X \lor Z \lor Y) \land$$

$$\land (\neg X \lor Z \lor \neg Y) \land (Y \lor Z \lor X) \land (\underline{Y \lor Z \lor \neg X}) \cong (X \lor Y \lor Z) \land$$

$$\land (\neg X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z).$$

4. Используя совершенную дизъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 1 на следующих наборах значений переменных: F(0,0,0,0) = F(0,1,0,0) = F(1,1,1,1) = 1.

Решение:

Первому условию удовлетворяет конъюнктивный одночлен $\neg X \land \neg Y \land \neg Z \land \neg T$, второму - $\neg X \land Y \land \neg Z \land \neg T$, третьему - $X \land Y \land Z \land T$.

Тогда формула

$$F(X,Y,Z,T) = (\neg X \land \neg Y \land \neg Z \land \neg T) \lor (\neg X \land Y \land \neg Z \land \neg T) \lor (X \land Y \land Z \land T)$$
 обращается в 1, если $\neg X \land \neg Y \land \neg Z \land \neg T$ обращается в 1, или $\neg X \land Y \land \neg Z \land \neg T$ обращается в 1.

Следовательно, F(X,Y,Z,T) - искомая формула.

5. Используя совершенную конъюнктивную нормальную форму, найдите наиболее простую формулу алгебры высказываний от четырех переменных, принимающую значение 0 на следующих наборах значений переменных: F(0,0,0,0) = F(0,1,0,0) = F(1,1,1,1) = 1.

Решение:

Первому условию удовлетворяет конъюнктивный одночлен $X\vee Y\vee Z\vee T$, второму - $X\vee \neg Y\vee Z\vee T$, третьему - $\neg X\vee \neg Y\vee \neg Z\vee \neg T$.

Тогда формула

$$F(X,Y,Z,T) = (X \lor Y \lor Z \lor T) \land (X \lor \neg Y \lor Z \lor T) \land (\neg X \lor \neg Y \lor \neg Z \lor \neg T)$$
 обращается в 0 , если $X \lor Y \lor Z \lor T$ обращается в 0 , или $X \lor \neg Y \lor Z \lor T$ обращается в 0 , или $\neg X \lor \neg Y \lor \neg Z \lor \neg T$ обращается в 0 .

Следовательно, F(X,Y,Z,T) - искомая формула.

- 6. Шесть спортсменов Адамов, Белов, Ветров, Глебов, Дронов и Ершов в проходившем соревновании заняли первые шесть мест, причем ни одно место не было разделено между ними. О том, кто какое место занял, были получены такие высказывания болельщиков:
- 1. "Кажется, первым был Адамов, а вторым Дронов".
- 2. "Нет, на первом месте был Ершов, а на втором Глебов".
- 3. "Вот так болельщики! Ведь Глебов был на третьем месте, а Белов на четвертом".
- 4. "И вовсе было не так: Белов был пятым, а Адамов вторым".
- 5. "Вы все перепутали: пятым был Дронов, а перед ним Ветров". Известно, что в высказывании каждого болельщика одно утверждение истинное, а второе ложное. Определите, какое место занял каждый из спортсменов.

Решение:

Обозначим простые высказывания X_y , где X — первая буква фамилии спортсмена, y — номер занятого места. Тогда высказывания запишем следующим образом:

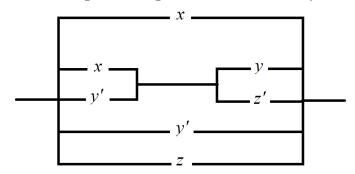
1)
$$A_1 \vee \mathcal{A}_2$$
; 2) $E_1 \vee \Gamma_2$; 3) $\Gamma_3 \vee E_4$; 4) $E_5 \vee A_2$; 5) $\mathcal{A}_5 \vee B_4$.

Пусть $A_1=1$, а $\mathcal{J}_2=0$. Тогда $E_1=0$, а $\Gamma_2=1$. Следовательно, $\Gamma_3=0$, а $E_4=1$. В четвертом высказывании $E_5=0$, а $E_4=1$. Получили противоречие.

Рассмотрим другой вариант. Пусть $A_1=0$, а $\mathcal{J}_2=1$. Тогда $E_1=1$, а $\Gamma_2=0$. Следовательно, $\Gamma_3=1$, а $E_4=0$. В четвертом высказывании $E_5=1$, а $E_4=0$. В последнем высказывании $E_5=0$, а $E_4=1$.

Таким образом, распределение мест получилось следующее: E_1 , \mathcal{I}_2 , Γ_3 , B_4 , E_5 , E_6 , т.е. на первом месте — Ершов, на 2-м — Дронов, на 3-м — Глебов, на 4-м — Ветров, на 5-м — Белов, на 6-м — Адамов.

7. Упростите релейно-контактную схему:



Решение:

Составим функцию проводимости:

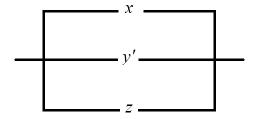
$$F(x, y, z) = x \vee ((x \vee y'') \cdot (y \vee z')) \vee y' \vee z =$$

$$= x \vee (((x \vee y') \cdot (y \vee z')) \vee y') \vee z =$$

$$= x \vee ((x \vee y') \cdot (y \vee y' \vee z')) \vee z = x \vee ((x \vee y') \cdot (1 \vee z')) \vee z =$$

$$= x \vee ((x \vee y') \cdot 1) \vee z = x \vee (x \vee y') \vee z = x \vee y' \vee z.$$

Построим упрощенную релейно-контактную схему.



8. КРИТЕРИИ ОЦЕНКИ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТА ПО ДИСЦИПЛИНЕ

На изучение дисциплины «Математическая логика» отводится один семестр. Максимальное количество, которое может набрать студент по итогам изучения данной темы (в ходе текущей работы и её контроля) по обязательным формам работы, — **80** баллов. Это составляет 80% от общего возможного количества баллов.

1. Посещение лекций и конспектирование добавляет в рейтинг студента по **2** *балла* за каждое занятие.

- 2. Посещение практического занятия с конспектированием 2 *балла*.
- 3. По итогам изучения дисциплины студент выполняет контрольную работу, за выполнение которой, он может заработать до **35** *баллов*.
- 4. Публичное решение задачи на практическом занятии добавляет в рейтинг студента 2 *балла*.
- 5. Составление конспекта или реферата по теме, выделенной на самостоятельное изучение, добавляет в рейтинг студента *8 баллов*.

Зачетное задание включает в себя 2 части: теоретическую и практическую. По теоретической части проводится собеседование, по итогам которого студент может набрать до *4 баллов*. Практическая часть представлена заданиями, за выполнение которых студент может набрать до *16 баллов*.

Рейтинг студента по дисциплине определяется в результате суммирования данных текущей работы и итогового контроля. Максимальное число баллов — 100. Студент, набравший по итогам работы в семестре менее 30 баллов, не получает допуск к зачёту.

Оценка «зачтено» ставится в случае, если студент набирает 51–100 баллов, «не зачтено» – ниже 51 балла.

В случае зачёта с оценкой набранные баллы переводятся в традиционные оценки по следующей шкале:

- 86 и более «отлично»;
- 66 85 «хорошо»;
- -51 65 «удовлетворительно»;
- 50 и менее «неудовлетворительно».

9. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

1. Зюзьков, В. М. Введение в математическую логику: учебное пособие / В. М. Зюзьков. — 2-е изд., испр. — Санкт-Петербург: Лань, 2018. — 268 с. — ISBN 978-5-8114-3053-6. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/107935 (дата обращения: 10.11.2020).

2. Скорубский, В. И. Математическая логика: учебник и практикум для вузов / В. И. Скорубский, В. И. Поляков, А. Г. Зыков. — Москва: Издательство Юрайт, 2020. — 211 с. — (Высшее образование). — ISBN 978-5-534-01114-2. — Текст: электронный // ЭБС Юрайт [сайт]. — URL: http://biblio-online.ru/bcode/451099 (дата обращения: 10.11.2020).

Дополнительная литература

- 1. E. M. Вечтомов, Математика: логика, множества, комбинаторика: учебное пособие для вузов / Е. М. Вечтомов, Д. В. Широков. — 2-е изд. — Москва : Издательство Юрайт, 2020. — 243 с. — 978-5-534-06612-8. — (Высшее образование). — ISBN Текст : Юрайт электронный ЭБС [сайт]. URL: http://biblioonline.ru/bcode/454362 (дата обращения: 10.11.2020).
- 2. Палий, И. А. Дискретная математика и математическая логика: учебное пособие для вузов / И. А. Палий. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 370 с. (Высшее образование). ISBN 978-5-534-12446-0. Текст: электронный // ЭБС Юрайт [сайт]. URL: http://biblio-online.ru/bcode/447489 (дата обращения: 10.11.2020).
- 3. Судоплатов, С. В. Математическая логика и теория алгоритмов: учебник и практикум для академического бакалавриата / С. В. Судоплатов, Е. В. Овчинникова. 5-е изд., стер. Москва: Издательство Юрайт, 2019. 255 с. (Высшее образование). ISBN 978-5-534-00767-1. Текст: электронный // ЭБС Юрайт [сайт]. URL: http://biblio-online.ru/bcode/432018 (дата обращения: 10.11.2020).