Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00

471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кузбасский гуманитарно-педагогический институт федерального государственного бюджетного образовательного учреждения высшего образования

«Кемеровский государственный университет» Факультет физической культуры, естествознания и природопользования

> Утверждаю Декан ФФКЕП В.А. Рябов 16 марта 2023 г.

Рабочая программа дисциплины

Б1.О.10 Теплофизика и гидрогазодинамика Код, название дисциплины

> Направление подготовки 20.03.01 Техносферная безопасность Код, название направления

Направленность (профиль) подготовки Безопасность технологических процессов и производств

Программа бакалавриата

Форма обучения Заочная

Год набора 2021

Новокузнецк 2023 г.

Лист внесения изменений

в РПД Б1.О.10 Теплофизика и гидрогазодинамика

Сведения об утверждении:

на 2023 / 2024 уч. год

Утверждена Ученым советом факультета (протокол Ученого совета факультета № 7 от 16.03.2023 г.)

Одобрена на заседании методической комиссии факультета (протокол методической комиссии факультета № 3 от 17.02.2023 г.)

Одобрена на заседании обеспечивающей кафедры (протокол заседания кафедры № 7 от $16.02.2023~\Gamma$.)

Оглавление

1 Цель дисциплины.	4
1.1 Формируемые компетенции	4
1.2 Дескрипторные характеристики компетенций	
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы	
промежуточной аттестации	7
3. Учебно-тематический план и содержание дисциплины	
3.1 Учебно-тематический план	7
3.2. Содержание занятий по видам учебной работы	9
4 Порядок оценивания успеваемости и сформированности компетенций	
обучающегося в текущей и промежуточной аттестации1	0
5 Материально-техническое, программное и учебно-методическое	
обеспечение дисциплины	1
5.1 Учебная литература 1	
5.2 Материально-техническое и программное обеспечение дисциплины 1	
5.3 Современные профессиональные базы данных и информационные	
справочные системы 1	2
6 Иные сведения и (или) материалы 1	
6.1. Темы письменных учебных работ 1	
6.2. Примерные вопросы и задания / задачи для промежуточной аттестации 1	

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы академического бакалавриата (далее - ОПОП): ОПК-1, ПК-3.

Содержание компетенций как планируемых результатов обучения по дисциплине см. таблица 1.

1.1 Формируемые компетенции

Таблица 1 - Формируемые дисциплиной компетенции

Наименование вида компетенции	Наименование категории (группы) компетенций	Код и название компетенции
общепрофессиональная		ОПК-1 Способен учитывать современные тенденции развития техники и технологий в области техносферной безопасности, измерительной и вычислительной техники, информационных технологий при решении типовых задач в области профессиональной деятельности, связанной с защитой окружающей среды и обеспечением безопасности человека
профессиональная		ПК-3 Способен использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении профессиональных задач, применять на практике навыки проведения и описания исследований, в том числе экспериментальных

1.2 Дескрипторные характеристики компетенций

Таблица 2 – Дескрипторные характеристики компетенций, формируемые дисциплиной

Код и название	Индикаторы достижения	Дисциплины и практики,
компетенции	компетенции по ОПОП	формирующие компетенцию ОПОП
ОПК-1 Способен	ОПК 1.6 – Использует	Б1.О.02 Информатика
учитывать	закономерности термодинамики и	Б1.О.03 Высшая математика
современные	теплообмена при решении	Б1.О.04 Физика
_	1 1 -	Б1.О.05 Химия
тенденции развития	вопросов в области	Б1.О.06 Начертательная геометрия и
техники и	профессиональной деятельности,	компьютерная графика
технологий в	связанной с защитой окружающей	Б1.О.07 Ноксология
области	среды и обеспечением	Б1.О.09 Детали машин и основы
mayyya a hawyya y	1 1 1 1	конструирования
техносферной	безопасности человека	Б1.О.10 Теплофизика и
безопасности,		гидрогазодинамика -
измерительной и		Б1.О.12 Электроника и электротехника
вычислительной		Б1.О.14 Теория горения и взрыва
техники,		Б1.О.16 Надежность технических
,		систем и техногенный риск
информационных		Б1.О.20 Системы автоматизированного
технологий при		проектирования средств обеспечения
решении типовых		безопасности
задач в области		Б1.О.21 Типовые промышленные

Код и название	Индикаторы достижения	Дисциплины и практики,
компетенции	компетенции по ОПОП	формирующие компетенцию ОПОП
профессиональной		технологии
деятельности,		Б1.О.23 Промышленная безопасность
связанной с		опасных производственных объектов
защитой		Б1.О.28 Охрана окружающей среды на
<u>'</u>		объектах экономики
окружающей среды		Б1.О.30 Способы и технологии защиты
и обеспечением		в чрезвычайных ситуациях
безопасности		Б1.О.32 Расчет и проектирование систем и средств обеспечения
человека		систем и средств обеспечения безопасности труда
		Б2.О.01(У) Учебная практика.
		Ознакомительная практика
		Б2.О.02(П) Производственная
		практика. Технологическая (проектно-
		технологическая практика)
		Б2.(Пд) Производственная практика.
		Преддипломная практика
		Б3.01 Подготовка к процедуре защиты
		и защита выпускной квалификационной
		работы
ПК-3 Способен	ПК-3.1 Использует методы	Б1.О.04 Физика
использовать	решения задач в области	Б1.О.05 Химия
законы и методы	техносферной безопасности с	Б1.О.10 Теплофизика и
математики,	помощью законов и методов	гидрогазодинамика Б1.О.12 Электроника и электротехника
естественных,	математики, естественных,	Б1.О.13 Метрология, стандартизация и
•	гуманитарных и экономических	сертификация
* ±	-	Б1.О.14 Теория горения и взрыва
экономических	наук	Б1.О.19 Введение в профессиональную
наук при решении		деятельность
профессиональных		Б1.О.24 Экономика охраны труда и
задач, применять		производственной безопасности
на практике навыки		Б1.В.ДВ.03.01 Организация научно-
проведения и		исследовательской деятельности
описания		Б1.В.ДВ.03.02 Патентоведение
исследований, в		Б2.В.01(П) Производственная практика.
•		Профильная практика.
том числе		ФТД.02 Избранные главы физической
экспериментальных		химии Б3.01 Подготовка к процедуре защиты и
		защита выпускной квалификационной работы.

Таблица 3 – Знания, умения, навыки, формируемые дисциплиной

тислица 5 опшим, уменим, навыки, формируемые дисциплингон							
Код и	название	Индикаторы	достижения	Знания,	умения,	навыки	(ЗУВ),
компетенции		компетенции	,	формиру	емые дисці	иплиной	
		закрепленны	е за	a			
		дисциплиной	Í				
ОПК-1	Способен	ОПК 1.6 -	- Использует	Знать:			
учитывать		закономерно	сти	-основны	е законы		
современные		термодинами	іки и	гидрогазодинамики;			
тенденции	развития	теплообмена	при решении	- порядок и правила монтажа и			И
техники и тех	нологий в	вопросов	в области	и эксплуатации			
области техн	носферной	профессиона	льной	гидрогазодинамических систе			M;
безопасности,	,	деятельности	і, связанной с	-основны	е законы т	ермодинам	иики и
измерительно	й и	защитой	окружающей	теплообм	ена, испол	ьзуемые д	ЛЯ
вычислительн	юй	среды и	обеспечением	расчетов	технологи	ческого	

Код и название	Индикаторы достижения	Знания, умения, навыки (ЗУВ),
компетенции	компетенции,	формируемые дисциплиной
	закрепленные за	
	дисциплиной	
техники,	безопасности человека	оборудования при решении
информационных		профессиональных задач.
технологий при		Уметь:
решении типовых задач		- применять имеющиеся знания к
в области		исследованию сложных
профессиональной		гидрогазодинамических процессов и
деятельности,		явлений окружающей среды,
связанной с защитой		связанных с этими процессами, в
окружающей среды и		профессиональной деятельности;
обеспечением		-решать теоретические задачи,
безопасности человека		используя основные законы
		термодинамики тепло – и
		массопереноса.
		Владеть:
		- практическими навыками
		применения закономерностей
		гидродинамических процессов в
		профессиональной деятельности;
		-навыками применения
		закономерностей теплообменных
		процессов для практического
		решения профессиональных задач.
ПК-3 Способен	ПК-3.1 Использует	Знать:
использовать законы и	методы решения задач в	-основные методы изучения
методы математики,	области техносферной	теплофизических и
естественных,	безопасности с помощью	гидрогазодинамических процессов,
гуманитарных и	законов и методов	лежащих в основе технологических
экономических наук	математики,	процессов;
при решении	естественных,	-способы получения и обработки
профессиональных	гуманитарных и	новой информации, необходимой для
задач, применять на	экономических наук	самообучения и решения конкретных
практике навыки	·	задач по теплофизике и
проведения и описания		гидрогазодинамике.
исследований, в том		Уметь:
числе		-находить и использовать научно-
экспериментальных		техническую информацию в
-		исследуемой области из различных
		ресурсов.
		Владеть:
		-опытом работы и использования в
		ходе проведения исследований
		научно- технической информации,
		Internet-ресурсов, баз данных и
		каталогов, электронных журналов и
		патентов, поисковых ресурсов и др. в
		области гидрогазодинамики и
		теплофизики.

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 3 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине, проводимые в разных формах		Объём часов по формам обучения				
		ОЗФО	ЗФО			
1 Общая трудоемкость дисциплины	108		108			
2 Контактная работа обучающихся с преподавателем (по видам	68		12			
учебных занятий) (всего)						
Аудиторная работа (всего):	68		12			
в том числе:						
лекции	32		6			
практические занятия, семинары	26		4			
лабораторные работы	10		2			
в интерактивной форме	10		2			
в электронной форме						
3 Самостоятельная работа обучающихся (всего)	40		92			
4 Промежуточная аттестация обучающегося —зачёт и объём часов, выделенный на промежуточную аттестацию:			4			

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 4 - Учебно-тематический план *очная форма обучения*

	ο ιπων φορπα σος τεπιών	Общая	Тр	удоемко	сть заня	тий (час.)	Формы
П,	Разделы и темы дисциплины по занятиям	трудоём кость	A	удиторн. занятия		СРС	текущего контроля и промежуточно
№ п/п	по запятиям	(всего час.)	лекц.	практ.	лаб.		й аттестации успеваемости
1	Техническая термодинамика	24	6	6	4	8	Собеседова
							ние на
							лабораторн
							ых и
							практически
							х занятиях,
							контрольная
2		26	0	0		0	работа
2	Тепломассообмен	26	8	8	2	8	Собеседова
							ние на
							лабораторн
							ых и
							практически
							х занятиях,
							контрольная
2	T	22	-		2	0	работа
3	Гидрогазодинамика	22	6	6	2	8	Собеседова
							ние на
							лабораторн
							ых и
							практически
							х занятиях,
							контрольная

	Общая Трудоемкость за					гий (час.)	Формы
М <u>∘</u> п/п	Разделы и темы дисциплины по занятиям	трудоём кость (всего час.)	· •	удиторна ванятия практ.	лаб.	CPC	текущего контроля и промежуточно й аттестации успеваемости
		iac.j					работа
4	Топливо и горения топлива	22	6	6	2	8	Собеседова ние на лабораторн ых и практически х занятиях, контрольная работа
5	Промышленная теплоэнергетика Промежуточная аттестация	18	6	4	-	8	Собеседова ние на практически х занятиях зачет
ИТОГ	1	108	32	26	10	40	

заочная форма обучения

	зио шил форми обу ими	Общая	Tp	удоемко	сть заня	гий (час.)	Формы
№ недели п/п	Разделы и темы дисциплины по занятиям	трудоём кость (всего	A	удиторн занятия лаб.		СРС	текущего контроля и промежуточно й аттестации успеваемости
1	Техническая термодинамика	<i>час.)</i> 20	1		1	18	Собеседова ние на лабораторн
							ых и практически
							х занятиях, контрольная работа
2	Тепломассообмен	23	2	2	1	18	Собеседова ние на лабораторн ых и практически х занятиях, контрольная работа
3	Гидрогазодинамика	21	2		1	18	Собеседова ние на лабораторн ых и практически х занятиях, контрольная работа
4	Топливо и горения топлива	20	1		1	18	Собеседова ние на лабораторн ых и практически х занятиях, контрольная

		Общая	Tp	удоемко	сть заня	гий (час.)	Формы
№ недели п/п	Разделы и темы дисциплины		•	удиторн. занятия	•	СРС	текущего контроля и промежуточно
№ но п/п	по занятиям	(всего час.)	лекц.	лаб.	практ.	CrC	й аттестации успеваемости
							работа
5	Промышленная теплоэнергетика	20			-	20	Собеседова
							ние на
							практически
							х занятиях
	Промежуточная аттестация	4				_	зачет
ИТОГ	0	108	6	2	4	92	

3.2. Содержание занятий по видам учебной работы

Таблица 6 – Содержание дисциплины

No	Наименование раздела,	
п/п	темы дисциплины	Содержание занятия
	Годержание лекционного курс	l a
1	Техническая	Уравнение состояния. Первый закон термодинамики. Газовые
1	термодинамика	процессы. Второй закон термодинамики. Газовые циклы
		тепловых машин. Реальные газы, водяной пар.
2	Тепломассообмен	Основной закон теплопроводности. Конвективный теплообмен
		(теплоотдача). Тепловое излучение. Тепловой расчет
		теплообменных аппаратов. Массообмен.
3	Гидрогазодинамика	Уравнение Бернулли. Гидростатика, гидравлика.
		Газодинамика. Техническая гидрогазодинамика.
4	Топливо и теория горения	Характеристики энергетических топлив. Физико-химические
		основы теории горения топлива. Процессы сгорания жидкого,
		газообразного и твердого топлива.
5	Промышленная	Теплоснабжение предприятий и населенных пунктов.
	теплоэнергетика	Энергосбережение и снижение вредных выбросов.
Соде	ржание практических заняти	ий
1	Техническая	Определение термодинамических параметров газов и их
	термодинамика	смесей.
		Определение теплоемкости материалов и веществ в
		термодинамических процесса.
		Расчет характеристик термодинамических процессов.
		Определение характеристик динамических процессов в парах с
	T	использованием диаграммам.
2	Тепломассообмен	Виды процессов переноса теплоты,
		Теплопередача через плоскую стенку.
		Передача теплоты через цилиндрическую стенку. Уравнение массообмена. Тепловой расчет рекуперативных
		теплообменных аппаратов
3	Гидрогазодинамика	Классификация трубопроводов и расходов. Общие сведения
3	т идрогазодинамика	
		по гидравлическому расчету трубопроводов. Расчет коротких и
		длинных трубопроводов.
		Расчет трубопроводов простых и сложных (разветвленных,
		параллельных).
4	Топливо и теория горения	Расчет теплоты сгорания и количества воздуха для сжигания
		топлива.
		Скорость распространения пламени в газовой смеси
_	П	Определение теплофизических параметров топлив.
5	Промышленная	Определение потребности в энергетических ресурсах в
L	теплоэнергетика	единицах условного и первичного топлива на работу

No	Наименование раздела,	Содержание занятия		
Π/Π	темы дисциплины			
		технологического оборудования.		
		Системы промышленного теплотехнического контроля,		
		Принципы проектирования функциональных схем		
		теплоконтроля.		
Содержание лабораторных работ				
1	Техническая	Адиабатический процесс		
	термодинамика	Уравнение состояния Ван-дер-Ваальса		
		Адиабатический процесс		
		Цикл Карно		
		Политропический процесс		
2	Тепломассообмен	Диффузия в газах.		
3	Гидрогазодинамика	Освоение экспериментального и расчетного способов		
		определения потерь напора на трение по длине.		
		Изучение законов течения идеальной жидкости		
4	Топливо и теория горения	Расчет объема и энтальпии продуктов сгорания топлива		
	Промежуточная аттестация –зачет			

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 7.

Таблица 7 - Балльно-рейтинговая оценка результатов учебной работы обучающихся по видам(БРС)

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы
(виды)	баллов	учебной работы	, ,	
Текущая учебная		Индивидуальные	За одно индивидуальное задание от 5	
работа в семестре		задания (отчет о	до:	30- 54
(Посещение		выполнении	5 баллов (выполнено 51 - 65% заданий)	
занятий по		индивидуального	7 балла (выполнено 66 - 85% заданий)	
расписанию и		задания)	9 баллов (выполнено 86 - 100% заданий)	
выполнение		Работа на практическом	За одно занятие от 0,5 до 1:	8,5-17
заданий)		занятии	0,5 баллов (выполнено 51 - 65% заданий)	
			0,7 балла (выполнено 66 - 85% заданий)	
			1 балл (выполнено 86 - 100% заданий)	
		Работа на лабораторном	За одно занятие от 0,5 до 1:	4,5-9
		занятии	0,5 баллов (выполнено 51 - 65% заданий)	
			0,7 балла (выполнено 66 - 85% заданий)	
			1 балл (выполнено 86 - 100% заданий)	
Итого по текуще	й работе	в семестре		43 - 80
Промежуточная	20	Теоретический вопрос	5 балла (пороговое значение)	5-10
аттестация			10 баллов (максимальное значение)	
(экзамен)				
		Решение задачи.	5 балла (пороговое значение)	5-10
			10 баллов (максимальное значение)	
Итого по промежуточной аттестации в семестре (экзамену)				
	ка по дис	циплине в семестре:	Сумма баллов текущей и промежуточной а	ттестации
51 – 100 б.				

5Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

1. Пискунов, В. М. Физика (теплофизика) : учебное пособие / В. М. Пискунов. - Москва : ИЦ РИОР : НИЦ ИНФРА-М, 2016. - 213 с. - ISBN 978-5-16-108481-6. - URL: https://znanium.com/catalog/product/561339 (дата обращения: 03.02.2021). — Текст : электронный

Дополнительная учебная литература

- 1. Шабаров, А.Б. Гидрогазодинамика: учебное пособие для вузов по специальности "Теплофизика" направления подготовки "Техническая физика": доп. УМО вузов РФ / А. Б. Шабаров; Тюменский гос. ун-т, Ин-т математики, естественных наук и информационных технологий. 2-е изд., перераб. Тюмень: ТюмГУ, 2013. 460 с. Библиогр. в конце гл.. URL: https://icdlib.nspu.ru/views/icdlib/5723/read.php (дата обращения: 03.02.2021) . ISBN 978-5-400-00795-8. Текст: электронный.
- 2. Смирнов, В. Г. Теплофизика: учебное пособие / В. Г. Смирнов, В. В. Дырдин, Т. Л. Ким. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2018. 171 с. ISBN 978-5-00137-007-9. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/115162 (дата обращения: 03.02.2021). Текст: электронный.

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях НФИ КемГУ:

339 Учебная аудитория (мультимедийная) для проведения:	654041,
-занятий лекционного типа;	Кемеровская
-занятий семинарского (практического) типа;	область -
- групповых и индивидуальных консультаций;	Кузбасс,
- текущего контроля, промежуточной аттестации.	Новокузнецк
Специализированная (учебная) мебель: доска, меловая, столы лабораторные,	ий городской
стулья.	округ, г.
Оборудование для презентации учебного материала: стационарное - ноутбук,	Новокузнецк,
проектор, экран.	ул.
Используемое программное обеспечение: MSWindows	Кузнецова, д.
(MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от	6
12.12.2018 г. до 12.12.2021 г.), LibreOffice (свободно распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
323 Лаборатория методики преподавания физики. Учебная аудитория для	654027,
проведения	Кемеровская
- занятий лабораторного типа.	область -
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	Кузбасс, г.
Учебно-наглядные пособия: лабораторные стенды с приборами для измерения	Новокузнецк,
температуры, давления, расхода и уровня.	пр-кт
Лабораторное оборудование: комплект лабораторный по молекулярной физике	Пионерский,
и термодинамике, компьютерный измерительный комплект, секундомер,	д.13, пом.1
контрольно-измерительные приборы, расходомеры, уровнемеры, набор образцов,	
датчики.	
106 Помещение для самостоятельной работы обучающихся.	654041,
Специализированная (учебная) мебель: столы, стулья, доска меловая.	Кемеровская

Оборудование: стационарное - компьютеры (4 шт.).	область -
Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium	Кузбасс,
3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021	Новокузнецк
г.), LibreOffice (свободно распространяемое ПО).	ий городской
Интернет с обеспечением доступа в ЭИОС.	округ, г.
	Новокузнецк,
	ул.
	Кузнецова, д.
	6

5.3 Современные профессиональные базы данных и информационные справочные системы.

- 1. База данных Science Direct (более 1500 журналов издательства Elsevier, среди них издания по математике и информатике), режим доступа: https://www.sciencedirect.com
- 2. Информационная система «Единое окно доступа к информационным ресурсам» http://window.edu.ru/catalog/
- 3. Базы данных и аналитические публикации на портале «Университетская информационная система Россия», режим доступа: https://uisrussia.msu.ru/

6 Иные сведения и (или) материалы.

6.1. Темы письменных учебных работ

Таблица 8 - Темы письменных контрольных работ

- 1. Определить тепловой поток в плоской стенке при заданном коэффициенте теплопроводности и заданном перепаде температур.
- 2. Определить эффективный коэффициент теплопроводности многослойного материала, содержащего теплопроводные и теплоизолирующие слои.
- 3. Задана температура внутри помещения, температура окружающей среды, суммарная мощность нагревателя, толщина и коэффициент теплопроводности стенки. Найти требуемую толщину слоя теплоизоляции.
- 4. Задана толщина цилиндрической стенки. Найти толщину слоя теплоизоляции, обеспечивающего требуемое термическое сопротивление.
- 5. Найти установившуюся температуру в помещении с оконным проемом при известной мощности обогревателя. Принять, что в оконном проеме находится стеклопакет с известной фективной теплопроводностью.
- 6. Задана начальная температура плоской стенки, коэффициент теплопроводности, удельная теплоемкость и плотность материала и удельная мощность теплового источника (на единицу площади поверхности). Найти зависимость температуры обогреваемой поверхности от времени.
- 7. Определить тепловой поток от плоской стенки при заданном коэффициенте теплоотдачи и заданном перепаде температур.
- 8. Определить суммарное тепловое сопротивление оконного стеклопакета.
- 9. Определить фактическое тепловое сопротивление многослойной стенки, если заданасуммарная мощность тепловыделения, установившаяся температура внутри помещения и температура внешней среды.
- 10. Определить эффективный коэффициент теплоотдачи с учетом излученияпри заданных абсолютных температурах среды и плоской стенки.
- 11. Задана температура поверхности конвектора, мощность конвектора и коэффициент теплоотдачи. Найти установившуюся температуру в помещении.
- 12. Найти установившуюся температуру в помещении с оконным проемом при

известной мощности обогревателя. Принять, что в оконном проеме находится стеклопакет с известным термическим сопротивлением (использовать справочные данные).

- 13. Водяной пар конденсируется на вертикальной поверхности стенки с известной температурой. Определить тепловую мощность, передаваемую в стенку.
- 14. Определить массу воды, испаряющейся за одну секунду при кипении жидкости в котле с заданной мощностью нагрева.
- 15. В системе парового отопления используются конвекторы с известным коэффициентом теплоотдачи. Определить массу конденсированной воды, если известна температура в помещении, давление и объемный расход пара.

6.2. Примерные вопросы и задания / задачи для промежуточной аттестации

Примерные вопросы к зачету

- 1.Закон Фурье. Коэффициенты теплопроводности.
- 2. Дифференциальное уравнение теплопроводности. Условия однозначности. Граничные условия 1, 2 и 3 рода.
- 3. Теплопроводность в плоской стенке при граничных условиях 1-го рода.
- 4. Многослойная стенка, термическое сопротивление теплопроводности.
- 5. Теплопроводность цилиндрической стенки.
- 6. Теплоотдача. Коэффициент теплоотдачи, термическое сопротивление теплоотдачи.
- 7. Понятия о расчете нестационарного температурного поля неограниченной пластины и бесконечного цилиндра. Числа Фурье, Био.
- 8. Термическое сопротивление теплопередачи для плоской, многослойной и цилиндрической стенки. Критический диаметр цилиндрической стенки.
- 9.Принцип выбора и расчета тепловой изоляции.
- 10. Методы интенсификации процесса теплопередачи.
- 11. Сущность конвективной теплоотдачи, факторы, определяющие его значение, свободная и вынужденная конвекция.
- 12. Гидродинамическая структура потока. Режимы течения.
- 13. Понятие о тепловом излучении. Законы теплового излучения. Серое тело и степень черноты.
- 14.Теплообмен излучением в системах тел: параллельные поверхности, тело в оболочке, система с экранами.
- 15. Теплообмен при конденсации пара на вертикальной поверхности, на поверхности горизонтальной трубы.
- 16.Особенности конденсации движущегося пара.
- 17. Конденсация пара на горизонтальных трубных пучках.
- 18. Режимы кипения. Механизм кипения.
- 19. Влияние теплофизических свойств поверхности и среды на интенсивность теплоотдачи при пузырьковом кипении.
- 20.Особенности теплообмена кипящей жидкости в трубках.
- 21.Основные понятия и определения. Молекулярная диффузия, градиент концентрации, законы Фика.
- 22. Конвективный массообмен. Аналогия процессов переноса теплоты и массы.
- 23. Классификация теплообменных аппаратов.
- 24. Основы теплового расчета теплообменников рекуперативного и регенеративного типа.
- 25. Конструктивный и поверочный расчеттеплообменников

- 26.Основное понятие о приближенных методах решения задач нестационарного теплообмена для тел конечных размеров.
- 27. Пакеты программ для моделирования процессов теплообмена.
- 28. Определение предмета гидрогазодинамики. Краткие исторические сведения.
- 29.Плотность жидкости, удельный вес, температурное расширение, сжимаемость.
- 30. Вязкость жидкости и закон внутреннего трения Ньютона.
- 31. Основное уравнение гидростатики. Поверхность равного давления. Закон Паскаля.
- 32. Геометрическое и энергетическое понятие основного уравнения гидростатики.
- 33. Абсолютное и избыточное давление.
- 34. Приборы для измерения давления.
- 35.Основные понятия и определения струйчатой модели движения жидкости.
- 36.Поток жидкости и его параметры.
- 37. Уравнение неразрывности для потока.
- 38. Уравнение Бернулли для элементарной струйки идеальной жидкости.
- 39. Уравнение Бернулли для струйки реальной жидкости.
- 40.Интегрирование уравнения движения Эйлера. Интеграл Бернулли.
- 41. Уравнение Бернулли для потока реальной жидкости.
- 42. Расходомер Вентури.
- 43. Трубка полного напора, трубка Пито.
- 44. Приборы для измерения скорости и расхода жидкости.
- 45. Режимы движения вязкой жидкости. Опыт Рейнольдса.
- 46.Основное уравнение установившегося равномерного движения жидкости.
- 47. Потери напора по длине при равномерном установившемся движении жидкости.
- 48. Гидравлические сопротивления при ламинарном и турбулентном режимах движения жилкости.
- 49. Физический смысл влияния шероховатости труб на потери напора.
- 50. Наиболее типичные местные сопротивления: (внезапное расширение трубопровода, диффузор, конфузор, колена и закругления, вход в трубу и выход из резервуара).
- 51. Ламинарное равномерное движение жидкости в круглых трубах.
- 52.Потери напора по длине при турбулентном установившемся равномерном движении жидкости. График Никурадзе.
- 53. Местные гидравлические сопротивления.
- 54. Внезапное и постепенное расширение трубы.
- 55. Простые и сложные местные сопротивления: (внезапоное сужение трубы, вход потока в трубу, диафрагма на трубопроводе, закругление трубы, регулирующая арматура, тройники).
- 56. Прямой и непрямой гидравлический удары.
- 57.Способы борьбы с гидравлическим ударом.
- 58. Расчет коротких трубопроводов: (расчет всасывающей трубы центробежного насоса; трубопроводы с насосной подачей жидкости; сифонный трубопровод). Трубопроводы с насосной подачей жидкости.
- 59. Расчет длинных трубопроводов.
- 60. Гидравлический расчет сложных трубопроводов: разветвленные, параллельные.
- 61. Принципы гидравлического расчета водопроводных сетей.
- 62. Применение водонапорных башен для водоснабжения. Максимальное и минимальное водопотребление
- 63.Истечение жидкости через отверстия в тонкой стенке при постоянном напоре (отверстие незатопленное и затопленное).
- 64.Истечение жидкости через большие отверстия.
- 65.Истечение жидкости через насадки (цилиндрические насадки, внутренние цилиндрические насадки, нецилиндрические насадки).

Примерные задачи

Задача 1. В резервуар объемом V компрессором нагнетается воздух. Начальное избыточное давление воздуха p_1 , начальная температура t_1 . Конечное избыточное давление p_2 ,температура воздуха t_2 . Определить массу воздуха, поступившего в резервуар, если давление внешней среды равно соответственно равны P_{6ap} . Данные для расчета: начальный объем .V =10, m^3 , начальное избыточное давление воздуха p_3 =0,1 МПа, начальная температура p_3 =0,1 С, конечное избыточное давление p_2 =3 МПа, температура воздуха p_3 =2,0 С, давление внешней среды p_3 =7,00 мм рт. ст.

Задача 2. Рассчитать смешанный цикл двигателя внутреннего сгорания, т.е. найти параметры P, v и t для характерных точек цикла, изменение внутренней энергии, энтальпии, энтропии, а также работу в отдельных процессах и цикле. Определить также степень предварительного расширения, степень повышения давления и термический КПД цикла. Данные для расчета: начальное давление p_1 =0,08 МПа, начальная температура t_1 =57 0 С , начальный объем V=0.001 м³ ; количество теплоты, подводимой в изобарном процессе Q_p =1.05 кДж; количество теплоты, подводимой в изохорном процессе Q_v =0.65 кДж; средние теплоемкости c_p =0,85, c_v =0.85 кДж/(кг·К), кДж/(кг·К); показатель адиабаты k=1,4; газовая =16. Изобразить цикл в p-v и T-s диаграммах. постоянная R=330 Дж/(кг·К).

Типовые тестовые задания

 Модель какой жидкости рассматривается в гидрогазодинамике? □ вязкой;
□ капельной;
□ идеальной и реальной;
□ идеальной несжимаемой.
2. Что является теоретической основой гидрогазодинамики?
□ уравнение Навье-Стокса;
□ уравнение сохранения массы;
□ первый закон термодинамики;
□ уравнение Менделеева-Клапейрона.
3. С повышением температуры текучесть
□ увеличивается;
□ уменьшается;
□ остаётся неизменной.
4. Свойство текучей среды, препятствующее её деформации называется
□ эластичностью;
□ упругостью;
□ вязкостью;
□ текучестью;
□ пластичностью.
5. Жидкость, для которой характерно отсутствие сил трения при скольжении
одного слоя жидкости по другому, называется
□ идеальной;
□ ньютоновской;

□ неньютоновской.
6. Зависимость скорости от времени в любой точке потока свидетельствует о
режиме течения.
□ турбулентном;
□ ламинарном;
□ напорном;
□ скоростном.
7. Два потока жидкости имеют геометрически сходственные ограничивающие
поверхности и скорости в сходственных точках пропорциональны. При этом
соблюдается подобие.
□ динамическое;
□ геометрическое;
□ кинематическое.
8. Уклон, равный удельной диссипированной мощности в объёме потока, при-
ходящейся на единицу длины, называется
□ положительным;
□ отрицательным;
□ гидравлическим;
□ пьезометрическим.
9. Жидкость, для которой характерно отсутствие сил трения при скольжении одного слоя
жидкости по другому называется
□ идеальной;
□ ньютоновской;
□ неньютоновской.
10. Уклон напорной линии называется
□ положительным;
□ отрицательным;
□ гидравлическим;
□ пьезометрическим.