Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00

471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кузбасский гуманитарно-педагогический институт федерального государственного бюджетного образовательного учреждения высшего образования

> «Кемеровский государственный университет» Факультет информатики, математики и экономики

> > **УТВЕРЖДАЮ** Декан А. В. Фомина «09» февраля 2023 г.

Рабочая программа дисциплины

К.М.05.02 Алгоритмизация математических моделей

Направление подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки

Математическое моделирование

Программа магистратуры

Квалификация выпускника магистр

> Форма обучения очная

Год набора 2023

Новокузнецк 2023

Оглавление

1 Цель дисциплины.	. 3
Формируемые компетенции, индикаторы достижения компетенций, знания,	
умения, навыки	. 3
Место дисциплины	. 3
2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы	
промежуточной аттестации	. 3
3. Учебно-тематический план и содержание дисциплины	. 4
3.1 Учебно-тематический план	. 4
4 Порядок оценивания успеваемости и сформированности компетенций	
обучающегося в текущей и промежуточной аттестации	. 5
5 Материально-техническое, программное и учебно-методическое	
обеспечение дисциплины.	. 5
5.1 Учебная литература	. 5
5.2 Материально-техническое и программное обеспечение дисциплины	. 6
5.3 Современные профессиональные базы данных и информационные	
справочные системы.	. 7
6 Иные сведения и (или) материалы.	. 7
6.1. Примерные вопросы для промежуточной аттестации	. 7

1 Цель дисциплины.

В результате освоения данной дисциплины у обучающегося должны быть сформированы компетенции основной профессиональной образовательной программы магистратуры (далее - ОПОП):

ПК-1 Способен проводить научно-исследовательские и опытно-конструкторские разработки при исследовании самостоятельных тем

Формируемые компетенции, индикаторы достижения компетенций, знания, умения, навыки

Таблица 1 – Индикаторы достижения компетенций, формируемые дисциплиной

Код и название	Индикаторы	Знания, умения, навыки (ЗУВ), формируемые
компетенции	достижения	дисциплиной
	компетенции по	
	ОПОП	
ПК-1 Способен	ПК 1.3 Оценивает	Знать:
проводить научно-	качество	- языки программирования, технологии и
исследовательские	формализации и	парадигмы реализации алгоритмов вычислительного
и опытно-	алгоритмизации	эксперимента;
конструкторские	поставленных задач	 основные алгоритмы решения задач
разработки при	ПК 1.4. Оценивает	математического моделирования. направления
исследовании	качество и	развития и использования математических и
	эффективности	информационных инструментальных средств,
самостоятельных	программного кода. Принимает решения	автоматизированных систем в научной и
тем	по его изменению.	практической деятельности; Уметь:
	по его изменению.	уметь: — применять математические методы, системное и
		прикладное программное обеспечение для решения
		задач научной и проектно-технологической
		деятельности
		 применять наукоемкие математические и
		информационные технологии и пакеты программ
		для решения прикладных задач в научной и
		проектно-технологической деятельности.
		Владеть:
		навыками разработки архитектуры,
		алгоритмических и программных решений в области
		системного и прикладного программного
		обеспечения для решения задач научной и проектно-
		технологической деятельности;

Место дисциплины

Дисциплина включена в модуль «Научно-исследовательская работа в области математического моделирования» ОПОП ВО, обязательная часть. Дисциплина осваивается на 2 курсе в 4 семестре.

2 Объём и трудоёмкость дисциплины по видам учебных занятий. Формы промежуточной аттестации.

Таблица 2 – Объем и трудоемкость дисциплины по видам учебных занятий

Общая трудоемкость и виды учебной работы по дисциплине,	Объём часов по формам обучения		
проводимые в разных формах	ОФО	ОЗФО	
1 Общая трудоемкость дисциплины	144		
2 Контактная работа обучающихся с преподавателем (по видам	32		

учебных занятий) (всего)		
Аудиторная работа (всего):	32	
в том числе:		
лекции	16	
практические занятия, семинары		
практикумы		
лабораторные работы	16	
в интерактивной форме		
в электронной форме		
Внеаудиторная работа (всего):		
в том числе, индивидуальная работа обучающихся с		
преподавателем		
подготовка курсовой работы /контактная работа		
групповая, индивидуальная консультация и иные виды		
учебной деятельности, предусматривающие групповую		
или индивидуальную работу обучающихся с		
преподавателем)		
творческая работа (эссе)		
3 Самостоятельная работа обучающихся (всего)	112	
4 Промежуточная аттестация обучающегося – зачет с оценкой:		

3. Учебно-тематический план и содержание дисциплины.

3.1 Учебно-тематический план

Таблица 5 - Учебно-тематический план очной формы обучения

№ недели п/п	Разделы и темы дисциплины						занятий	Формы текущего контроля и
неде	мкиткнае оп	(всего час.)	Ауди заня	-	CPC	промежуточно й аттестации		
No 1			лекц.	лабор.	C1 C	успеваемости		
Семе	стр 4							
	1. Основные алгоритмы и технологии решения задач	72	8	8	56	Реферат		
	математического моделирования							
1	1.1 Парадигмы, языки и технологии математического	18	2	2	14	отчеты о		
	моделирования					выполнении		
2	1.2 Основные алгоритмы решения прямых задач	18	2	2	14	лабораторны		
	моделирования					х работ		
3	1.3 Основные алгоритмы решения проектировочных	18	2	2	14			
	задач							
4	1.4 Основные алгоритмы решения задач	18	2	2	14			
	идентификации							
	2. Алгоритмизация математических моделей и	72	8	8	56	реферат		
	интеграция программных модулей на основе							
	объектной декомпозиции							
7	2.1 Объектная декомпозиция математических	18	2	2	14	отчеты о		
	моделей					выполнении		
8	2.2 Функционально-объектная парадигма	18	2	2	14	лабораторны		

4

№ недели п/п	Разделы и темы дисциплины по занятиям	Общая грудоём кость (всего час.)		(час.)	занятий СРС	Формы 1 текущего контроля и промежуточно й аттестации успеваемости
Семес	стр 4					
	программирования и композиция алгоритмов					х работ
9	2.3 Инструментальные средства алгоритмизации математических моделей	18	2	2	14	
	математических моделеи					
10	2.4 Интеграция вычислительных программ для	18	2	2	14	
	моделирования сопряженных и связанных процессов					
18	Промежуточная аттестация - зачет с оценкой					зачет с
	• • •					оценкой
	Bcero:	144	16	16	112	

4 Порядок оценивания успеваемости и сформированности компетенций обучающегося в текущей и промежуточной аттестации.

Для положительной оценки по результатам освоения дисциплины обучающемуся необходимо выполнить все установленные виды учебной работы. Оценка результатов работы обучающегося в баллах (по видам) приведена в таблице 4.

Таблица 4 - Шкала и показатели оценивания результатов учебной работы обучающихся по видам в балльно-рейтинговой системе (БРС)

Учебная работа	Сумма	Виды и результаты	Оценка в аттестации	Баллы	
(виды)	баллов	учебной работы	(шкала и показатели оценивания)		
Текущая учебная	80	Лекционные занятия	1 балл посещение 1 лекционного	5 - 8	
работа в семестре		(конспект)	занятия		
(Посещение		(8 занятий)			
занятий по		Лабораторные работы	6 баллов - выполнение работы на 51-65%	36 - 56	
расписанию и		(отчет о выполнении	7 баллов – посещение 1 занятия и		
выполнение		лабораторной работы)	существенный вклад на занятии в работу		
заданий)		(8 работ).	всей группы, самостоятельность и		
			выполнение работы на 85,1-100%		
		Реферат (по разделу 1	10 баллов (пороговое значение)	10 - 16	
		или 2 на выбор)	16 баллов (максимальное значение)		
Итого по текуще	й работе в	семестре		41 - 80	
Промежуточная	20	Устный ответ 1.	6 баллов (пороговое значение)	6 - 10	
аттестация (зачет			10 баллов (максимальное значение)		
с оценкой)		Устный ответ 2.	6 баллов (пороговое значение)	6 - 10	
			10 баллов (максимальное значение)		
Итого по промеж	уточной а	ттестации (зачету)	1	12 - 20 б.	
Суммарная оцен	Суммарная оценка по дисциплине: Сумма баллов текущей и промежуточной аттестации 51 – 100 б.				

5 Материально-техническое, программное и учебно-методическое обеспечение дисциплины.

5.1 Учебная литература

Основная учебная литература

1. Каледин, В.О. Алгоритмизация математических моделей [Текст]: учебное пособие / В.О. Каледин, Е.И. Васильева - Новокузнецк: Министерство образования и науки Российской Федерации, Новокузнецкий институт (филиал) Кемеровского государственного университета, 2014. - 78 с.

Дополнительная учебная литература

- 1. Незнанов, А. А. Программирование и алгоритмизация [Текст] : учебник / А. А. Незнанов. Москва : Академия, 2010. 304 с. (Высшее профессиональное образование: информатика и вычислительная техника). Гриф УМО "Рекомендовано".
- 2. Казначеева, О.К. Идентификация параметров упругости и жесткости конструкций из армированных материалов [Текст]: Монография / В.О. Каледин, О.К. Казначеева Новочеркасск: Лик, 2012. 136 с.
- 3. Каледин В.О. Численно-аналитические модели в прочностных расчетах пространственных конструкций [Текст] / В.О. Каледин Новокузнецк: НФИ КемГУ, 2000. $212~\rm c.$
- 4. Данилов, Н.Н. Математическое моделирование: учебное пособие [Электронный ресурс] : учебное пособие. Электрон. дан. Кемерово : Издательство КемГУ (Кемеровский государственный университет), 2014. 98 с. Режим доступа: http://e.lanbook.com/view/book/58313

5.2 Материально-техническое и программное обеспечение дисциплины.

Учебные занятия по дисциплине проводятся в учебных аудиториях КГПИ КемГУ:

ученые занятия по дисциплине проводятся в ученых аудиториях к	TITI KCMI J.
410 Учебная аудитория (мультимедийная) для проведения:	654079,
- занятий лекционного типа;	Кемеровская
- групповых и индивидуальных консультаций;	область, г.
- текущего контроля и промежуточной аттестации;	Новокузнецк,
Специализированная (учебная) мебель: доска меловая, кафедра, моноблоки	пр-кт
аудиторные.	Металлургов,
Оборудование: стационарное - компьютер, экран, проектор.	д. 19
Используемое программное обеспечение: MSWindows, LibreOffice (свободно	
распространяемое ПО), Яндекс.Браузер (отечественное свободно распространяемое ПО).	
Интернет с обеспечением доступа в ЭИОС.	
508 Лаборатория компьютерного моделирования	654079,
Учебная аудитория (мультимедийная) для проведения:	Кемеровская
- занятий лабораторного типа;	область, г.
- групповых и индивидуальных консультаций;	Новокузнецк,
- самостоятельной работы;	пр-кт
- текущего контроля и промежуточной аттестации.	Металлургов,
Специализированная (учебная) мебель: доска меловая, кафедра, столы, стулья.	д. 19
Оборудование для презентации учебного материала: стационарное - компьютер	
преподавателя, проектор, экран.	
Лабораторное оборудование: стационарное – компьютеры для обучающихся (18	
шт.).	
Используемое программное обеспечение: MSWindows, LibreOffice (свободно	
распространяемое ПО), FoxitReader (свободно распространяемое ПО), Firefox 14	
(свободно распространяемое ПО), Яндекс.Браузер (отечественное свободно	
распространяемое ПО), Орега 12 (свободно распространяемое ПО),	
MicrosoftVisualStudio, Интерпретатор "Ядро" (отечественное ПО, лицензионный	
договор №1 от 16.06.2020 г. до 16.06.2025 г.); Среда функционально-объектного	
программирования "Алгозит" (отечественное ПО, лицензионный договор №2 от	
16.06.2020 г. до 16.06.2025 г.).	
Интернет с обеспечением доступа в ЭИОС.	

5.3 Современные профессиональные базы данных и информационные справочные системы.

Перечень СПБД и ИСС по дисциплине

- 1. Информационная система «Единое окно доступа к информационным pecypcam» http://window.edu.ru/catalog/
- 2. Базы данных и аналитические публикации на портале «Университетская информационная система Россия» https://uisrussia.msu.ru/
- 3. Новые информационные технологии и программы Сайт о свободном программном обеспечении и новых информационных технологиях http://pro-spo.ru/
- 4. CITForum.ru on-line библиотека свободно доступных материалов по информационным технологиям на русском языке http://citforum.ru
- 5. База «Научная электронная библиотека». Электрон. прогр.—[Электронный ресурс] Режим доступа: http://elibrary.ru , свободный. Загл. с экрана.
- 6. Общероссийский математический портал (информационная система) http://www.mathnet.ru/
- 7. Экспонента центр инженерных технологий и моделирования http://www.exponenta.ru
- 8. Science Direct содержит более 1500 журналов издательства Elsevier, среди них издания по математике и информатике. https://www.sciencedirect.com
- 9. Крупнейший веб-сервис для хостинга IT-проектов и их совместной разработки-https://github.com/

6 Иные сведения и (или) материалы.

6.1. Примерные вопросы для промежуточной аттестации

Семестр 3

Таблица 5 - Примерные теоретические вопросы и задания к зачету

Разделы и темы	Примерные теоретические				
	вопросы				
1. Основные алгоритмы и технологии решения задач математического моделирования					
1.1 Парадигмы, языки и технологии	1. Сравнение концепций языков C++ и C#.	1. Выберите средства реализации на языках С++ и С#: а) массива объектов			
математического	2. Основные концепции	(экземпляров классов); б) безопасной			
моделирования	функциональных языков	очистки памяти динамически созданных			
	программирования.	объектов.			
		2. Изобразите функциональную схему			
		алгоритма вычисления статистических			
		характеристик выборки (среднее, СКО,			
		мода) по результатам измерений.			
1.2 Основные алгоритмы	3. Алгебраические задачи,	3. Подберите алгоритм решения СЛАУ в			
решения прямых задач	решаемые при	модели стационарного процесса: а)			
моделирования	моделировании	одномерной теплопроводности; б)			
	квазистационарных	двумерной теплопроводности на			
	процессов и равновесных	регулярной сетке; в) двумерной			
	состояний.	теплопроводности на нерегулярной			
	4. Алгебраические задачи,	сетке.			
	решаемые при	4. Балансная модель нестационарного			
	моделировании	процесса теплопроводности включает			
	нестационарных процессов.	внутренний кондуктивный и внешний			
		радиационный теплообмен. Предложите			
		конструкцию алгоритма с расщеплением			

		по процессам.
1.3 Основные алгоритмы решения проектировочных задач	5. Постановка задачи проектирования. 6. Сравнение концепций оптимального проектирования и рационального проектирования.	5. Дайте содержательную интерпретацию задачи проектирования, включающей условие оптимума, одно ограничение-равенство и несколько ограничений-неравенств на фазовые переменные. 6. Проектируемое устройство при эксплуатационных нагрузках не должно иметь перемещения, превышающие предельные. Сформулируйте постановку задачи: а) оптимального проектирования конструкции минимальной массы; б) оптимального проектирования конструкции максимальной жесткости с ограничением по массе; в) рационального проектирования
1.4 Основные алгоритмы решения задач идентификации	7. Постановка задачи параметрической идентификации модели. 8. Обусловленность задачи идентификации. Основные алгоритмы решения некорректных задач.	конструкции с ограничением по массе. 7. Дана серия кривых «напряжение- деформация» при различной скорости нагружения. Сформулируйте задачи: а) параметрической идентификации линейной модели: а) Кельвина (последовательное соединение пружины и демпфера); б) Максвелла (параллельное соединение пружины и демпфера). 8. Постройте схему алгоритма решения некорректной задачи параметрической идентификации на основе регуляризации по А.Н. Тихонову.
	матических моделей и интегра	иция программных модулей на основе
объектной декомпозиции 2.1 Объектная декомпозиция математических моделей	9. Объектная структура топологической и геометрической модели. 10. Декомпозиция функциональной модели по процессам.	9. Дана двумерная область в виде квадрата с круглым отверстием. Предложите регулярную топологию: а) обеспечивающей сгущение сетки к кромке отверстия; б) дающую сетку, во всей области близкую к равномерной. 10. Движущийся объект механически взаимодействует с окружающей средой и содержит упругие элементы. Выделите процессы, происходящие в объекте во время движения.
2.2 Функционально- объектная парадигма программирования и композиция алгоритмов	11. Представление алгоритма в виде сети алгоматов. 12. Агрегирование функциональных объектов.	11. Представьте алгоритм вычисления статистических характеристик выборки в виде сети алгоматов, единственным выходом которой является алгомат, содержащий вариационный ряд в виде одномерной таблицы. 12. Сеть из задания 11 реализована в виде агрегата. Требуется вычислить характеристики трёх выборок: а) среднее, б) среднее и СКО, в) среднее и моду. Изобразите подграфы агрегата, которые будут строиться в каждом из этих трёх случаев.

2.3 Инструментальные	13. Конструирование	13. Средствами конструктора
средства	функционально-объектных	функционально-объектных схем
алгоритмизации	схем.	постройте агрегат из задания 11.
математических	14. Скрипты алгоматов.	14. Какие скрипты следует задать для
моделей	Переменные скрипта для	алгомата СКО, если вся сеть агрегата
	табличного алгомата.	находится на одном уровне
		итерирования?
2.4 Интеграция	15. Алгомат приложения и	15. Укажите, может ли агрегат, заданный
вычислительных	его атрибуты.	преподавателем, быть корневой
программ для	16. Организация связи по	страницей приложения.
моделирования	данным при	16. Внешнее приложение 1 реализовано
сопряженных и	комплексировании	в системе программирования на языке
связанных процессов	вычислительных программ,	С++, приложение 2 – в среде «Алгозит».
	реализованных в разных	Данные каких видов, выгруженные в
	системах	файл первым приложением, могут
	программирования	использоваться во втором приложении:
		а) текстовые представления целых чисел;
		б) двоичные представления целых чисел;
		в) текстовые таблицы, содержащие
		числовые и строковые данные.

Составитель (и): Каледин В.О., профессор