Подписано электронной подписью:

Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00

471086fad29a3b30e244c728abc3661ab35c9d50210dcf0e75e03a5b6fdf6436

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

> «Кемеровский государственный университет» Новокузнецкий институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Кемеровский государственный университет» Физико-математический и технолого-экономический факультет Кафедра математики, физики и методики обучения

Рабочая программа дисциплиныБ1.В.ОД.21 Численные методы

Направление подготовки (специальность) 44.03.01 «Педагогическое образование»

Направленность (профиль) подготовки «Математика»

> Программа академического бакалавриата

Квалификация выпускника бакалавр

> Форма обучения заочная

> Год набора 2013

Новокузнецк 2017

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине (модулю),	
соотнесенных с планируемыми результатами освоения основной образовательной	
программы	3
2. Место дисциплины в структуре ООП бакалавриата	3
3. Объем дисциплины (модуля) в зачетных единицах с указанием количества	
академических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам занятий) и на самостоятельную работу обучающихся	3
3.1. Объём дисциплины (модуля) по видам учебных занятий (в часах)	4
4. Содержание дисциплины (модуля), структурированное по темам (разделам) с	
указанием отведенного на них количества академических часов и видов учебных	
занятий	4
4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в	
академических часах)	4
4.2 Содержание дисциплины (модуля), структурированное по темам (разделам)	5
5. Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине (модулю)	7
6. Фонд оценочных средств для проведения промежуточной аттестации	
обучающихся по дисциплине (модулю)	
6.1 Паспорт фонда оценочных средств по дисциплине (модулю)	
6.2 Типовые контрольные задания или иные материалы	. 10
6.3 Методические материалы, определяющие процедуры оценивания знаний,	
умений, навыков и (или) опыта деятельности, характеризующие этапы формирования	
компетенций	. 18
7. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины (модуля)	
а) основная учебная литература:	
б) дополнительная учебная литература:	. 22
8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины (модуля)*	
9. Методические указания для обучающихся по освоению дисциплины (модуля)	. 23
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине (модулю), включая перечень программного	
обеспечения и информационных справочных систем (при необходимости)	. 24
11. Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине (модулю)	
12. Иные сведения и (или) материалы	. 24
12.1. Перечень образовательных технологий, используемых при осуществлении	
образовательного процесса по дисциплине (модулю)	
12.2. Занятия, проводимые в интерактивных формах	
12.3. Особенности реализации дисциплины для инвалидов и лиц с ограниченны	
возможностями здоровья	.25

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной образовательной программы 44.03.01 педагогическое образование (профиль Математика)

В результате освоения ОПОП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине

Коды	Результаты освоения ОПОП	Перечень планируемых результатов
компетенции	Содержание компетенций*	обучения по дисциплине
ОПК-3	ОПК-3 готовность к психолого- педагогическому сопровождению учебно- воспитательного процесса	Знать: историю, теорию, закономерности и принципы построения и функционирования образовательных (педагогических) систем, роль и место образования в жизни личности и общества; основы психодидактики, поликультурного образования, закономерности поведения в социальных сетях; основные закономерности возрастного развития, стадии и кризисы развития и социализации личности, индикаторы и индивидуальные особенности траекторий жизни и их возможные девиации, приемы их диагностики. Уметь: общаться с детьми, признавать их достоинство, понимая и принимая их; осуществлять (совместно с психологом и другими специалистами) психологопедагогическое сопровождение основных общеобразовательных программ. Владеть технологиями: защиты достоинства и интересов обучающихся, помощи детям, оказавшимся в конфликтной ситуации и/или неблагоприятных условиях; оказания помощи и поддержки в организации деятельности ученических органов самоуправления; создания, поддержания уклада, атмосферы и традиций жизни образовательной организации.

2. Место дисциплины в структуре ООП бакалавриата

Данная дисциплина относится к обязательным дисциплинам вариативной части ОПОП ВПО подготовки студентов по направлению 44.03.01 профиль «Математика», направление подготовки «Педагогическое образование».

Дисциплина изучается на 4 курсе

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость	(объем)	дисциплины	(модуля)	составляет	<u>2</u>
зачетных единиц (ЗЕТ),	72 aı	кадемических	часов.		

3.1. Объём дисциплины (модуля) по видам учебных занятий (в часах)

	Всего	часов
06 "	для очной	1 1
Объём дисциплины	формы	/очно-заочной
	обучения	формы обучения
Общая трудоемкость дисциплины		72
Контактная работа обучающихся с преподавателем		
(по видам учебных занятий) (всего)		
Аудиторная работа (всего**):		12
в т. числе:		
Лекции		4
Семинары, практические занятия		
Практикумы		
Лабораторные работы		8
Внеаудиторная работа (всего**):		
В том числе, индивидуальная работа обучающихся		
с преподавателем:		
Курсовое проектирование		
Групповая, индивидуальная консультация и иные		
виды учебной деятельности, предусматривающие		
групповую или индивидуальную работу		
обучающихся с преподавателем		
Творческая работа (эссе)		
Самостоятельная работа обучающихся (всего**)		56
Вид промежуточной аттестации обучающегося		4
(зачет с оценкой)		

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в академических часах)

для заочной формы обучения

		Общая доёмкость (часах)	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)		Формы	
№ п/п	Раздел дисциплины	Общая трудоёмко (часах)	аудиторные учебные занятия		самостоятельная работа обучающихся	текущего контроля успеваемости
		всего	лекции	семинары, практические занятия		
1.	Теория погрешностей. Решение систем линейных уравнений.	11	2	1	8	Лабораторная работа

№ п/п	Раздел дисциплины	Общая трудоёмкость (часах)	учебные занятия работа		ту обучающихся (в часах) самостоятельная	Формы текущего контроля успеваемости
		всего	лекции	семинары, практические занятия		
2.	Решение нелинейных уравнений и систем нелинейных уравнений.	11	2	1	8	Лабораторная работа. Устный опрос.
3.	Интерполирование функций. Методы наилучшего приближения.	9		1	8	Лабораторная работа. Проверка конспекта.
4.	Численное дифференцирование и интегрирование.	9		1	8	Лабораторная работа. Устный опрос.
5.	Численные методы решения дифференциальных уравнений.	10		2	8	Лабораторная работа.
6.	Численное интегрирование дифференциальных уравнений в частных производных.	9		1	8	Лабораторная работа.
7.	Элементы линейного, нелинейного и динамического программирования.	9		1	8	Индивидуальное задание.

4.2 Содержание дисциплины (модуля), структурированное по темам (разделам)

№ п/п	Наименование раздела дисциплины	Содержание
1	Теория погрешностей. Г	Решение систем линейных уравнений.
\mathcal{C}	Годержание лекционног	го курса
1.1.	Теория погрешностей. Решение системы линейных уравнений: точные методы, итерационные методы.	Источники погрешностей. Абсолютная и относительная

No	Наименование раздела	Содержание		
п/п	дисциплины	-		
	<u> </u>	Практические схемы решения на ЭВМ.		
	емы практических/сем	1		
1.1	Теория погрешностей. Решение системы	Теория погрешностей. Решение системы линейных		
	Решение системы линейных уравнений:	уравнений методом Гаусса (схема единственного деления) с использованием таблиц Excel. Решение системы линейных		
	точные методы,	уравнений методом простой итерации с использованием		
	итерационные методы.	ЭВМ. Решение системы линейных уравнений методом		
	of m	Зейделя с использованием ЭВМ.		
2	Решение нелинейны	х уравнений и систем нелинейных уравнений.		
\mathcal{C}	Содержание лекционног			
2.1.	Решение нелинейного	Отделение корней уравнения. Приближенное вычисление		
	уравнения. Понятие о	корня уравнения с заданной точностью методом половинного		
	методе Ньютона	деления. Практическая схема вычисления приближенного		
	решения системы	значения корня уравнения с заданной точностью методом		
	нелинейных уравнений.	простой итерации. Метод Ньютона решения нелинейных		
		уравнений. Практическое применение метода Ньютона для		
		системы двух нелинейных уравнений с двумя неизвестными с		
		использованием ЭВМ.		
	емы практических/сем			
2.1	Решение нелинейных	Отделение корней уравнения. Приближенное вычисление		
	уравнений. Решение	корня уравнения с заданной точностью методом половинного		
	систем нелинейных	деления. Метод простой итерации численного решения уравнений. Условия сходимости итерационной		
	уравнений методом Ньютона.	последовательности. Практические схемы вычисления		
	Пьютона.	приближенного значения корня уравнения с заданной		
		точностью методом простой итерации. Сходимость и		
		устойчивость численного метода. Метод Ньютона решения		
		нелинейных уравнений и систем уравнений.		
3	Интерполирование (функций. Методы наилучшего приближения.		
T	емы практических/сем	инарских занятий		
3.1	Численная	Построение интерполяционного многочлена Лагранжа для		
	интерполяция.	функции, заданной таблицей. Оценка погрешности		
	Алгебраический	интерполирования по формуле Лагранжа. Вычисление		
	интерполяционный	разделенных разностей. Первый и второй многочлены		
	многочлен: форма	Ньютона. Практическая оценка погрешности		
	Лагранжа и Ньютона.	интерполирования по формулам Ньютона. Уплотнение		
	Методы наилучшего	таблиц функций. Дискретный вариант среднеквадратических приближений. Переопределенная система линейных		
	приближения.	приближений. Переопределенная система линейных уравнений. Понятие об определении параметров		
		функциональной зависимости. Метод наименьших квадратов.		
4	Численное лиффере	нцирование и интегрирование.		
	Годержание лекционног			
4.1.	Численное	Численное дифференцирование на основе		
	дифференцирование и	интерполяционных формул Лагранжа, Ньютона. Метод		
	интегрирование.	неопределенных коэффициентов. Погрешность формул		
		численного дифференцирования. Квадратурная формула		
		прямоугольников. Формулы Ньютона – Котеса. Метод		
		неопределенных коэффициентов. Формула трапеций.		
		Формула Симпсона. Квадратурная формула Гаусса.		

№ п/п	Наименование раздела дисциплины	Содержание
	емы практических/сем	инарских занятий
4.1	Численное дифференцирование.	Численное дифференцирование на основе интерполяционных формул Лагранжа, Ньютона. Метод неопределенных коэффициентов. Погрешность формул численного дифференцирования.
4.2	Численное интегрирование.	Квадратурная формула прямоугольников. Формулы Ньютона – Котеса. Метод неопределенных коэффициентов. Формула трапеций. Формула Симпсона. Квадратурная формула Гаусса.
5	Численные методы реш	ения дифференциальных уравнений.
	Содержание лекционног	
5.1.	Численные методы решения дифференциальных уравнений.	Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Метод Рунге – Кутта. Многошаговые методы.
	емы практических/сем	
5.1	Численные методы решения дифференциальных уравнений.	Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Эйлера-Коши. Метод Рунге – Кутта. Многошаговые методы.
6	Численное интегриро	ование дифференциальных уравнений в частных
	производных.	
(Содержание лекционног	го курса
6.1	Численное интегрирование дифференциальных уравнений в частных производных, начальные и краевые условия.	Численное интегрирование дифференциальных уравнений в частных производных, начальные и краевые условия. Метод сеток.
T	емы практических/сем	инарских занятий
6.1	Численное интегрирование дифференциальных уравнений в частных производных, начальные и краевые условия.	Численное интегрирование дифференциальных уравнений в частных производных, начальные и краевые условия.
6.2	Метод сеток.	Метод сеток.
7		о, нелинейного и динамического программирования.
	емы практических/сем	
7.1	Элементы линейного и нелинейного программирования.	Линейное программирование. Симплекс-метод. Двойственные задачи. Введение в нелинейное программирование.
7.2	Элементы динамического программирования.	Введение в динамическое программирование. Многошаговые процессы принятия решений.

5. Перечень учебно-методического обеспечения для самостоятельной

работы обучающихся по дисциплине (модулю)

P	оты обучающихся		Самостоятельная работа студенто)B	
№ п/п	Название раздела, темы	Количес тво часов в соотв. с тематич еским планом	Задания, выносимые на самостоятельную работу	Сроки выполнени я	Формы контроля
1.	Теория погрешности. Решение систем линейных уравнений.	8	1.Оценка влияния погрешностей аргументов на значение функции. 2.Прямые методы решения систем линейных уравнений. 3.Метод прогонки. 4Метод ортогонализации. 1.Метод Монте-Карло. 5.Точные методы решения систем линейных уравнений: матричный метод, метод Крамера, метод Гаусса.	к зачету	реферат
2.	Решение нелинейных уравнений и систем уравнений.	8	 1.Решение нелинейного уравнения методом хорд. 2.Комбинированный метод хорд и касательных. 3.Методы отделения корней нелинейных уравнений. 	к зачету	конспект
3.	Интерполирование функций. Методы наилучшего приближения.	8	1. Аппроксимация функций. Использование рядов. 2. Интерполяция сплайнами. 3. Интерполяционный многочлен Эрмита. 4. Нахождение приближающей функции в виде: степенной, показательной, дробно-линейной, логарифмической функций.	к зацету	лабораторная работа
	Численное дифференцирование и численное интегрирование.	8	1. Аппроксимация производных. Улучшение аппроксимации. Частные производные. 2Использование сплайнов. 3. Кратные интегралы. 4. Метод Монте-Карло.	к зачету	конспект
5.	Численные методы решения дифференциальных уравнений.	8	 Краевые задачи. Метод стрельбы. Методы конечных разностей. 	к зачету	реферат

6.	Численное интегрирование дифференциальных уравнений в частных производных.	8	 Волновое уравнение. Уравнение теплопроводности. Понятие о схемах расщепления. 	к зачету	конспект
7.	Элементы линейного, нелинейного и динамического программирования.	8	1.Метод искусственного базиса. 2.Метод штрафных функций. 3. Решение задач распределения ресурсов.	к зачету	индивидуаль- ное задание

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

6.1. Паспорт фонда оценочных средств по дисциплине (модулю)

	ол. наспорт фонда оценочных средств по дисциплине (модулю)							
№	Контролируемые разделы (темы)	Код контролируемой	наименование					
Π/Π	дисциплины	компетенции* (или её части)	оценочного					
	(результаты по разделам)	/ и ее формулировка – по	средства					
		желанию						
1.	Раздел №1. Теория	ОПК-3	Лабораторная					
	погрешностей.		работа,					
	Решение систем линейных		собеседование					
	уравнений.							
2.	Раздел №2. Решение нелинейных	ОПК-3	Лабораторная					
	уравнений и систем нелинейных		работа,					
	уравнений.		собеседование					
3.	Раздел №3. Интерполирование	ОПК-3	Лабораторная					
	функций. Методы наилучшего		работа,					
	приближения.		собеседование,					
			тестирование					
4.	Раздел №4. Численное	ОПК-3	Лабораторная					
	дифференцирование и		работа,					
	интегрирование.		собеседование					
5.	Раздел №5. Численные методы	ОПК-3	Лабораторная					
	решения		работа,					
	дифференциальных уравнений.		собеседование					
6.	Раздел №6. Численное	ОПК-3	Лабораторная					
	интегрирование		работа,					
	дифференциальных уравнений в		собеседование					
	частных производных.							
7.	Раздел №7. Элементы	ОПК-3	Индивидуальное					
	линейного, нелинейного и		задание,					
	динамического		собеседование,					
	программирования.		тестирование					

6.2. Типовые контрольные задания или иные материалы

В качестве формы итогового контроля знаний по дисциплине «Численные методы» предусмотрен $\it sau\ddot{e}m$.

6.2.1. Зачет

а) типовые задания

Задание 1.

Решить систему линейных уравнений с точностью $\epsilon = 10^{-4}$ различными способами:

- а) методом Гаусса (по схеме единственного деления) с применением таблиц Excel;
- b) методом простой итерации на ПЭВМ;
- с) методом Зейделя на ПЭВМ.

Вариант1.

$$\begin{cases} 3,01x_1 - 0,14x_2 - 0,15x_3 = 1,00, \\ 1,11x_1 + 0,13x_2 - 0,75x_3 = 0,13, \\ 0,17x_1 - 2,11x_2 + 0,71x_3 = 0,17; \end{cases}$$

Вариант2.

$$\begin{cases} -0.20x_1 + 1.60x_2 - 0.10x_3 = 0.30, \\ -0.30x_1 + 0.10x_2 - 1.50x_3 = 0.40, \\ 1.20x_1 - 0.20x_2 + 0.30x_3 = -0.60; \end{cases}$$

Вариант3.

$$\begin{cases} 9,12x_1 + 5,63x_2 + 7,81x_3 = 9,80, \\ 3,84x_1 + 5,15x_2 + 2,86x_3 = 6,77, \\ 4,18x_1 + 5,79x_2 + 1,21x_3 = 5,82; \end{cases}$$

Вариант4.

$$\begin{cases} -1.14x_1 - 0.04x_2 + 0.21x_3 = -1.24, \\ 0.25x_1 - 1.23x_2 - 0.17x_3 = 0.95, \\ -0.21x_1 - 0.17x_2 + 0.80x_3 = 2.56; \end{cases}$$

Вариант5.

$$\begin{cases}
0.73x_1 + 1.24x_2 - 0.38x_3 = 0.58, \\
1.25x_1 + 0.66x_2 - 0.78x_3 = 0.66, \\
0.75x_1 + 1.22x_2 - 0.83x_3 = 0.92;
\end{cases}$$

Задание 2.

- а) Отделить корни заданного уравнения:
 - а) графически;
 - б) с использованием ПЭВМ.
- b) C помощью микрокалькулятора вычислить один корень уравнения с точностью ϵ = 10^{-3} , используя метод простой итерации.
- с) Составить программу для вычисления с помощью ПЭВМ всех корней заданного уравнения методом половинного деления с точностью ϵ =10⁻⁶.

Вариант 1.
$$cosx - (x-1)^2 = 0$$
;

Вариант 2.
$$8\cos x - x = 6$$
;

Вариант 3.
$$0.5^x + 1 = (x-2)^2$$
;

Вариант 4.
$$2x - \lg x - 7 = 0$$
;

Вариант 5.
$$x \cdot \ln(x+1) = 1$$
.

Задание 3.

а) Составить программу для уточнения одного из корней уравнения методом Ньютона с точностью $\varepsilon=10^{-4}$.

Вариант 1.
$$cosx - (x-1)^2 = 0$$
;

Вариант 2.
$$8\cos x - x = 6$$
;

Вариант 3.
$$0.5^x + 1 = (x-2)^2$$
;

Вариант 4.
$$2x - \lg x - 7 = 0$$
;

Вариант 5.
$$x \cdot \ln(x+1) = 1$$
.

b) Решить систему нелинейных уравнений методом Ньютона с точностью $\varepsilon = 10^{-3}$.

Вариант 1.
$$\begin{cases} \sin(x+y) - 1.6x = 0, \\ x^2 + y^2 = 1; \end{cases}$$

Вариант 2.
$$\begin{cases} tg(xy+0.4) = x^2 \\ 0.6x^2 + 2y^2 = 1; \end{cases}$$

Вариант 1.
$$\begin{cases} x^2 + y^2 = 1; \\ x^2 + y^2 = 1; \end{cases}$$
Вариант 2.
$$\begin{cases} tg(xy + 0.4) = x^2, \\ 0.6x^2 + 2y^2 = 1; \end{cases}$$
Вариант 3.
$$\begin{cases} e^{xy} = x^2 - y + 1, \\ (x + 0.5)^2 + y^2 = 0.6; \end{cases}$$
Вариант 4.
$$\begin{cases} \sin(x + y) - 1.1x = 0.1, \\ x^2 + y^2 = 1; \end{cases}$$
Вариант 5.
$$\begin{cases} \sin(x + y) - 1.2x = 0.2, \end{cases}$$

Вариант 4.
$$\begin{cases} \sin(x+y) - 1, 1x = 0, 1, \\ x^2 + y^2 = 1; \end{cases}$$

Вариант 5.
$$\begin{cases} \sin(x+y) - 1, 2x = 0.2, \\ x^2 + y^2 = 1. \end{cases}$$

Задание 4.

а) По заданной таблице значений функции составить формулу интерполяционного многочлена Лагранжа. Построить его график и отметить на нем узловые точки.

Вариант 1	
-----------	--

X	2	3	5
У	4	1	7

Вариант	2.
---------	----

X	0	2	3
у	-1	-4	2

Вариант 3.

X	-1	0	3
У	7	-1	4

Вариант 4.

X	7	9	13
У	2	-2	3

Вариант 5.

X	3	5	7
у	4	-1	7

b) Вычислить с помощью калькулятора одно значение заданной функции для промежуточного значения аргумента с помощью интерполяционного многочлена Лагранжа и оценить погрешность интерполяции.

X	f(x)=
	$\frac{\lg x}{x} + x^2$
1,3	1,7777
2,1	4,5634
3,7	13,8436
4,5	20,3952
6,1	37,3387
7,7	59,4051
8,5	72,3593

Номер варианта	X
1	1,7
2	2,8
3	4,1
4	5,2
5	7,3

с) Составить программу для уплотнения части таблицы заданной функции, пользуясь интерполяционными формулами Ньютона; шаг субтабулирования H=0,01.

X	sinx
0,60	0,56464
0,65	0,60519
0,75	0,64422

0,80	0,68164
0,90	0,71736
0,95	0,75128
1,00	0,78333
1,05	0,81342
1,10	0,84147
1,15	0,86742
1,20	0,89121

Номер варианта	Концы отрезка субтабулирования	
	a	b
1	0,65	0,75
2	0,75	0,80
3	0,80	0,85
4	0,85	0,90
5	0,90	0,95

Задание 4.

- 1) Вычислить с помощью калькулятора значение производной функции, заданной таблично, используя:
 - а) интерполяционную формулу Лагранжа, оценить погрешность метода;
 - б) интерполяционную формулу Ньютона, оценить погрешность метода;
 - в) метод неопределенных коэффициентов.

номер варианта	функция f(x)	X ₀
1	sinx	0,6
2	cosx	0,05
3	sinx	1,05
4	cosx	0,85
5	sinx	0,95

- 2) Вычислить с помощью калькулятора интеграл заданной функции при n=10 по формуле:
 - а) прямоугольников;
 - б) трапеций;
 - в) Симпсона.

Произвести оценку погрешности методов интегрирования.

1.
$$\int_{1.2}^{2.2} \frac{\lg(x+2)}{x} dx;$$

$$2. \int_{0,4}^{2,4} \frac{e^{0,03x}}{x} dx;$$

$$3. \int_{0.8}^{1.8} \frac{\sin(2x)}{x^2} dx;$$

$$4. \int_{1,6}^{3,6} \frac{x}{2} \cdot \lg\left(\frac{x^2}{2}\right) dx;$$

5.
$$\int_{-1}^{1} (x - e^{2x}) dx$$
;

3) Составить программу вычисления интеграла заданной функции по формуле Симпсона. Использовать варианты задания 2.

Задание 5.

Решить задачу Коши для дифференциального уравнения y'=f(x, y) на отрезке [a; b] при заданном начальном условии y(a)=c и шаге интегрирования h:

- 1) методом Эйлера:
 - а) на калькуляторе с шагом 2h;
 - б) на ПЭВМ с шагом h;
 - в) построить график интегральной кривой;
- 2) методом Эйлера Коши:
 - а) на калькуляторе с шагом 2h;
 - б) построить график интегральной кривой;
- 3) методом Рунге Кутта на ПЭВМ с шагом h.

Номер	f(x, y)	a	b	С	h
варианта					
1	$1 - \sin(0.75x - y) + \frac{1.75}{x - 1}$	0	1	0	0,1
2	$x + \cos \frac{y}{\sqrt{5}}$	1,8	2,8	2,6	0,1
3	$xy + \sin x$	0	1	2	0,1
4	$\cos(1.5x - y^2) - 1.3$	-1	1	0,2	0,2
5	$1 + 0.2y \cdot \sin x - y^2$	0	1	0	0,1

Задание 6.

Применяя метод сеток, найти решение задачи Дирихле для уравнения Лапласа $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ в квадрате ABCD с вершинами A(0;0), B(0;1), C(1;1), D(1;0) с шагом h= $\frac{1}{5}$. При решении задачи использовать итерационный процесс усреднения Либмана до получения ответа с точностью до 0.001.

Краевые условия приведены в таблице вариантов.

Номер варианта	$Uig _{AB}$	$U _{_{BC}}$	$U _{\scriptscriptstyle CD}$	$U _{_{AD}}$
1	30y	$30(1-x^2)$	0	0
2	30(1-y)	$20\sqrt{x}$	20y	30x(1-x)
3	$20y^2$	20	20y	10x(1-x)
4	0	50sinπx	$50y(1-y^2)$	0
5	30y	30	$30\sin\frac{\pi y}{2}$	0

Задание 7.

Используя метод сеток, решить смешанную задачу для дифференциального уравнения параболического типа $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (уравнения теплопроводности) при заданных начальных условиях $\mathbf{u}(\mathbf{x},\,0)=\mathbf{f}(\mathbf{x}),\,\mathbf{u}(0,\,t)=\phi(t),\,\mathbf{u}(0.6,\,t)=\psi(t),\,$ где $\mathbf{x}\in[0;\,0,6].$ Решение выполнить при $\mathbf{h}=0,1$ для $\mathbf{t}\in[0;\,0,01],\,$ считая $\sigma=1/6$:

- а) на калькуляторе;
- б) на ПЭВМ.

Начальные условия приведены в таблице вариантов.

Номер варианта	f(x)	$\varphi(t)$	Ψ(t)
1	cos2x	1-6t	0,3624

2	2x(1-x)+0,2	0,2	t+0,68
3	0,3+x(x+0,4)	0,3	6t+0,9
4	lg(2,63-x)	3(0,14-t)	0,3075
5	x(x+1)	0	2t+0,96

Задание 8.

По заданной таблице значений функции построить методом наименьших квадратов линейную и квадратичную регрессии с использованием:

- а) калькулятора;
- б) ПЭВМ.

Сравнить величины среднеквадратических отклонений.

4		

1.								
X	0,10	0,30	0,40	0,60	0,70	0,80	1,00	1,10
y	0,25	0,50	0,65	0,55	0,42	0,30	0,22	0,15
								_
2.								
X	1,30	1,40	1,60	1,70	1,80	2,00	2,10	2,30
y	6,10	4,80	3,90	3,20	4,00	5,10	5,30	6,05
3.								
X	1,30	1,40	1,60	1,70	2,00	2,10	2,30	2,50
у	2,40	1,80	1,20	1,40	2,30	2,90	3,00	3,20
4.								
X	0,40	0,70	0,90	1,10	1,40	1,60	1,70	2,00
y	0,15	0,83	1,65	1,52	0,90	0,31	0,25	0,10
5.								
X	2,00	2,50	2,70	2,90	3,20	3,40	3,70	4,00
V	0,11	0,81	1,05	0,90	0,23	0,18	0,10	0,05

Перечень вопросов к зачету:

- 1. Абсолютная и относительная погрешности приближенных чисел. Правило округления чисел.
- 2. Метод Гаусса решения систем линейных уравнений (схема единственного деления).
- 3. Метод простой итерации (для систем линейных уравнений).
- 4. Метод Зейделя.
- 5. Этапы приближенного решения уравнений с одним неизвестным.
- 6. Отделение корней нелинейного уравнения. Графическое отделение корней.
- 7. Метод половинного деления. Условие окончания процесса деления при заданной допустимой погрешности.
- 8. Достаточное условие сходимости итерационной последовательности.
- 9. Условие окончания итерационного процесса при заданной допустимой погрешности.
- 10. Метод простой итерации (для нелинейных уравнений).
- 11. Метод Ньютона.
- 12. Задача интерполирования табличной функции.
- 13. Интерполяционный многочлен Лагранжа.
- 14. Таблицы конечных разностей.
- 15. Интерполяционные многочлены Ньютона. Оценка погрешностей интерполяционных формул Ньютона.

- 16. Обратное интерполирование.
- 17. Численное дифференцирование. Общий случай вычисления производной произвольного порядка.
- 18. Численное дифференцирование на основе интерполяционных формул Ньютона и Лагранжа.
- 19. Погрешность формул численного дифференцирования.
- 20. Численное интегрирование. Квадратурная формула прямоугольников.
- 21. Формулы Ньютона Котеса.
- 22. Формула трапеций.
- 23. Формула Симпсона.
- 24. Численные методы решения дифференциальных уравнений. Метод Эйлера.
- 25. Метод Рунге Кутта.
- 26. Численное интегрирование дифференциальных уравнений в частных производных, начальные и краевые условия.
- 27. Метод сеток для задачи Дирихле.
- 28. Метод сеток для уравнения параболического типа.
- 29. Методы наилучшего приближения.
- 30. Метод наименьших квадратов.

б) критерии оценивания результатов обучения

Требования, предъявляемые к ответам, направлены на проверку достигнутого студентами уровня овладения дисциплины и ориентированы на ФГОС ВПО направления подготовки бакалавра.

В результате освоения дисциплины обучающиеся должны знать:

- основы теории погрешностей;
- основные численные методы алгебры;
- методы построения интерполяционных многочленов;
- методы численного дифференцирования и интегрирования;
- методы численного решения дифференциальных уравнений;
- методы численного решения дифференциальных уравнений в частных производных; уметь:
 - численно решать нелинейные уравнения;
 - использовать основные понятия теории среднеквадратичных приближений для построения элемента наилучшего приближения;
 - интерполировать и оценить возникающую погрешность;
 - применять формулы численного дифференцирования и интегрирования;
 - применять методы численного решения дифференциальных уравнений и уравнений в частных производных;

владеть:

- теоретическими сведениями о численных методах решения прикладных задач;
- навыками разработки компьютерно-ориентированных вычислительных алгоритмов решения прикладных задач;
- навыками реализации математических методов на компьютере путем программирования;
- навыками применения программных математических пакетов для реализации математических методов.

в) описание шкалы оценивания

За каждое правильно выполненное задание (или пункт задания) студент получает 2 балла, частично выполненное задание – 1 балл, за неправильно выполненное задание - 0 баллов. Оценки выставляются по следующей шкале:

"Зачтено" - более 50 % - 41 и более баллов, "Не зачтено" - 50% и менее - 40 и менее баллов.

6.2.2. Устное собеседование по теоретическому материалу дисциплины, проведение тестирования

Критерии устного собеседования (от 1 до 5 баллов за одно занятие):

- 2 балла выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания по рассматриваемому разделу дисциплины и умение уверенно применять их при решении практических задач;
- 1 балл выставляется студенту, в ответе которого содержатся несущественные пробелы в знаниях теоретического материала, допускаются ошибки в выполнении заданий.
- 0 баллов выставляется студенту, в ответе которого содержатся существенные пробелы в знаниях теоретического материала, допускаются принципиальные ошибки в выполнении заданий.

Проведение тестирования:

за правильный ответ теста испытуемый получает 1 балл, за неправильный или неуказанный ответ - 0 баллов.

6.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

В качестве формы итогового контроля знаний по дисциплине «Численные методы» предусмотрен зачет. Обучающиеся, систематически работающие на лабораторных занятиях, получают зачет по результатам накопительной системы, представленной в технологической карте.

Итоговая проверка знаний студентов, не набравших в течение семестра необходимых баллов для положительной оценки, осуществляется в письменной (итоговый тест) и устной форме (вопросы к зачету по дисциплине). Перечень вопросов, образец тестовых заданий содержится в рабочей программе и сообщается обучающимся заранее. Тесты раздаются непосредственно во время зачета и включают материал по всем темам курса, указанным в тематическом плане. Для получения оценки «зачтено» необходимо правильно выполнить более 50%, менее 50% правильных заданий – оценка «незачтено».

Итоговый тест по дисциплине «Численные методы» (30 вопросов на 120 минут)

Указания: Все задания имеют 5 вариантов ответа, из которых правильный только один. Номер выбранного Вами ответа обведите кружочком в бланке для ответов

- 1. Укажите границы, в которых находится точное число D, если его приближенное значение d=42,36 найдено с точностью до 0,7.
 - 1) [42,06;42,66], 2) [41,96;42,76], 3) [41,86;42,86], 4) [41,76;42,96], 5) [41,66;43,06].
- 2. Приближенное значение x=24,6035 имеет относительную погрешность δ_x =2%. Найти абсолютную погрешность Δ_x .
 - 1) 0,49207; 2)0,39501; 3)0,21302; 4) 0,52908; 5)0,40803.

3. Дана система
$$\begin{cases} x_1-x_2-x_3=1\\ 3x_1-x_2+x_3=2\\ x_1-x_2-x_3=3 \end{cases}$$

Привести систему к виду
$$x_i = \sum\limits_{j=1}^n \; \alpha_{ij} \; + \beta_i (i = \overline{1,n} \,), \, n = 3$$
 , и, приняв за

начальное приближение $X^{(0)} = (0; 0; 0;)$, найти точки $X^{(1)}, X^{(2)}$ итерационной последовательности.

1)
$$X^{(1)} = (1; -2; -3), X^{(2)} = (4; -2; 0)$$

2)
$$X^{(1)} = (-1; -2; -3), X^{(2)} = (-4; -2; 0);$$

3)
$$X^{(1)} = (1; 2; 3); X^{(2)} = (4; 2; 0);$$

4)
$$X^{(1)} = (1; -2; -3); X^{(2)} = (-4; -2; 0);$$

5)
$$X^{(1)} = (-2; 1; 3); X^{(2)} = (0; -2; 4);$$

4. Дана система линейных уравнений :
$$\begin{cases} x_1 + x_2 = 5, \\ 2x_1 + x_2 = 3. \end{cases}$$

Преобразовать систему к нормальной системе, которая гарантирует сходимость итерационного процесса метода Зейделя для исходной системы.

1)
$$\begin{cases} 5x_1 + 3x_2 = 11\\ 3x_1 + 2x_2 = 8; \end{cases}$$

2)
$$\begin{cases} 3x_1 + 5x_2 = 11, \\ 2x_1 + 3x_2 = 8; \end{cases}$$
 3)
$$\begin{cases} 5x_1 + 3x_2 = 8, \\ 3x_1 + 2x_2 = 11; \end{cases}$$

3)
$$\begin{cases} 5x_1 + 3x_2 = 8, \\ 3x_1 + 2x_2 = 11. \end{cases}$$

4)
$$\begin{cases} 2x_1 + 3x_2 = 11\\ 3x_1 + 5x_2 = 8; \end{cases}$$

4)
$$\begin{cases} 2x_1 + 3x_2 = 11, \\ 3x_1 + 5x_2 = 8; \end{cases}$$
 5)
$$\begin{cases} 3x_1 + 2x_2 = 11, \\ 5x_1 + 3x_2 = 8. \end{cases}$$

5. Записать расчетные формулы итерационного процесса Зейделя для системы:

$$\begin{cases} x_1 + x_2 = 5, \\ 2x_1 + x_2 = 3 \end{cases}$$

1)
$$\begin{cases} y_1 = -1.5x_2 + 5.5, \\ y_2 = -0.6y_1 + 1.6; \end{cases}$$
 2)
$$\begin{cases} y_1 = -0.6x_2 + 2.2, \\ y_2 = -1.5y_1 + 4; \end{cases}$$
 3)
$$\begin{cases} y_1 = -0.6x_2 + 2.2, \\ y_2 = -1.5x_1 + 4; \end{cases}$$

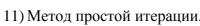
4)
$$\begin{cases} y_1 = -1.5x_2 + 5.5, \\ y_2 = -0.6x_1 + 1.6; \end{cases}$$
5)
$$\begin{cases} y_1 = -0.6x_2 + 4, \\ y_2 = -1.5y_1 + 2.2. \end{cases}$$

- Какое условие является критерием для достижения заданной точности 6. решении системы линейных уравнений методом простой итерации? (ho - метрика, по которой была установлена сходимость и получено α).
 - 1) $\rho(x^{(K-1)}, x^{(K)}) \leq \mathcal{E}$;

2)
$$\rho(x^{(k-1)}, x^{(k)}) \leq \frac{\varepsilon \cdot (1+\alpha)}{\alpha}, \alpha \langle 1;$$

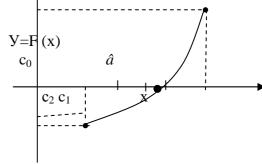
3)
$$\rho(x^{(k-1)}, x^{(k)}) \leq \frac{\varepsilon \cdot \alpha}{1-\alpha}, \quad \alpha \rangle 1;$$

4)
$$P(x^{(k-1)}, x^{(k)}) \leq \frac{\varepsilon \cdot (1-\alpha)}{\alpha}, \alpha \rangle 1;$$


5)
$$\rho(x^{(k-1)}, x^{(k)}) \leq \frac{\varepsilon \cdot (1-\alpha)}{\alpha}, \alpha \langle 1.$$

7. Даны две точки 3-мерного пространства X(-1,2,0) и Y(1,3,-2). Найти $\rho_1(X,Y)$.

- 8. В чем заключается этап отделения корней при использовании численных методов решения уравнений?
 - 6) В нахождении отрезка, содержащего все корни уравнения.
 - 7) В установлении «тесных» промежутков, содержащих только один корень.
 - 8) В определении интервала, содержащего только корни, интересующие вычислителя.
 - 9) В нахождении отрезка, содержащего все положительные корни уравнения.
 - 10) В установлении промежутка, содержащего все отрицательные корни уравнения.
- 9. Отделить графически корень уравнения $\cos x - \ln x = 0$.


На рисунке проиллюстрирован один из численных методов решения не линейного 10. уравнения F(x) = 0: у

F(e)

- 11) Метод простой итерации.
- 12) Метод Ньютона.
- 13) Метод половинного деления.
- 14) Метод хорд.

- 0
- 15) Комбинированный метод. F(a)

Уточнить корень уравнения $(x-4)^3 - 2 = 0$ на [5; 6] одним из численных методов с 11. точностью ${\cal E}_{=10^{-3}}$.

12. Построить интерполяционный многочлен Лагранжа для функции, заданной таблицей.

таолицеи.						
X	1	3	4			
f(x)	12	4	6			

- 1) $L_2(x) = 2x^2 12x + 22$; 2) $L_2(x) = x^2 6x + 11$; 3) $L_2(x) = 3x^2 12x + 24$;
- 4) $L_2(x)=x^2-4x+8$:
- 5) $L_2(x) = 4x^2 12x + 24$.
- 13. В таблице приведены вычисления для нахождения значения функции, заданной таблицей в точке x=1.91, пользуясь интерполяционным многочленом Лагранжа.

$x_0 = 1,91$	$x_0 = 0.41$	$x_1 = 1,55$	$x_2 = 2,67$	$x_3 = 3,84$	$ ho_{\scriptscriptstyle i}$	\mathcal{Y}_i	y_i
							$ ho_{\scriptscriptstyle i}$
$x_0 = 0.41$	1,50	-1,14	-2,26	-3,43	-13,26	2,63	-0,1983
$x_1 = 1,55$	1,14	0,36	-1,12	-2,29	1,053	3,75	3,561
$x_2 = 2,67$	2,26	1,12	-0,76	-1,17	2,251	4,87	2,163
$x_3 = 3,84$	3,43	2,29	1,17	-1,93	-17,74	5,03	-0,2835

$$L_3(1,91) = \Pi_4(1,91) \cdot S \approx 4,15$$

Используя данные таблицы, найти $\Pi_4(1,91)$.

1) 0,70297; 2) -0,70297; 3) -0,79207; 4) 0,79207; 5)-0,79702.

14. Первая интерполяционная формула Ньютона имеет вид:

1)
$$P_n(x) = y_0 + t \Delta y_0 + \frac{t(t-1)}{2!} \cdot \Delta^2 y_0 + ... + \frac{t(t-1).....(t-n+1)}{n!} \Delta^n y_0$$

2)
$$P_n(x) = y_n + t \Delta y_{n-1} + \frac{t \cdot (t+1)}{2!} \cdot \Delta^2 y_{n-2} + \dots + \frac{t \cdot (t+1) \dots (t+n-1)}{n!} \cdot \Delta^n y_0$$
;

3)
$$P_{n}(x) = \sum_{i=0}^{n} \frac{(x-x_{0})...(x-x_{i-1}).(x-x_{i+1})....(x-x_{n})}{(x_{i}-x_{0})...(x_{i}-x_{i-1})\cdot(x_{i}-x_{i+1})....(x_{i}-x_{n})};$$

4)
$$P_n(x) = y_0 + t\Delta y_0 + \frac{t \cdot (t+1)}{2!} \cdot \Delta^2 y_0 + \dots + \frac{t \cdot (t+1) \cdot \dots \cdot (t+n-1)}{n!} \cdot \Delta^n y_0;$$

5)
$$P_n(x) = y_n - t\Delta y_{n-1} + \frac{t \cdot (t+1)}{2!} \cdot \Delta^2 y_{n-2} - \dots + \frac{t \cdot (t+1) \dots (t+n-1)}{n!} \cdot \Delta^n y_0$$

15. В первой интерполяционной формуле Ньютона t находится по формуле:

1)
$$t = \frac{x - x_n}{h}$$
; 2) $t = \frac{x + x_0}{h}$; 3) $t = \frac{x - x_0}{h}$;

4)
$$t = \frac{x + x_n}{h}$$
 ; 5) $t = \frac{x_0 + x_n}{h}$.

16. Найти значение производной функции f(x), заданной таблицей в точке х = 32, используя первый интерполяционный многочлен Ньютона.

X	32	33	34	35	36
F(x)	5,657	5,745	5,831	5,916	6,000

- 1) 0,056;
- 2) 0,067;
- 3) 0,078; 4) 0,089;
- 5)0,099.

17. Найти значение производной функции f(x) в точке x = 32, используя метод неопределенных коэффициентов. F(x) задана таблицей

X	31	32	33	34
F(x)	5,568	5,657	5,745	5,831

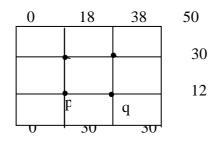
- 1) 0,056;
- 2) 0,067;
- 3) 0,078
- 4) 0,089;
- 5)0,099.

18. Вычислить приближенное значение производной функции, заданной таблицей в точке x=32, используя интерполяционный многочлен Лагранжа

To the x=32, henomby yr unitephoniatholinibu who to then the panka.					
X	31	32	33		
F(x)	5,568	5,657	5,745		

 $\int_{0}^{1} x^{2} \sin x dx$ 19. Вычислить трапеций. формуле Значения подынтегральной функции в узловых точках приведены в таблице:

X	y = f(x)
0	0
0,1	0,0010
0,2	0,0079
0,3	0,0266
0,4	0,0623
0,5	0,1199
0,6	0,2033
0,7	0,3157
0,8	0,4991
0,9	0,6345
1	0,8415


- 1) 0,2291;2) 0,3252;
- 3) 0,4354; 4) 0,5132;
- 5) 0,1112.
- 20. Произвести оценку погрешности интегрирования по формуле трапеций для функции $f(x) = x^2 \sin x$ на отрезке [0;1], h=0,1
 - 1) 0,2820; 2) 0,0354;
- 3) 0,0055;
- 4) 0,0021;
- 5) 0,0285.
- 21. Вычислить интеграл по формуле Симпсона при n=6: $\int \sqrt{1+x} \ dx$.
 - 1) 0,9951; 2) 1,8509; 3) 2,2105; 4) 3,2108; 5) 4,6665.
- 22. Произвести оценку погрешности интегрирования по формуле Симпсона для функции $f(x) = \sqrt{1+x}$ на отрезке [0:3], h=0.5. 1)0,0008531; 2) 0,0009765; 3) 0,0010202; 4) 0,0025301; 5) 0,0031083.
- 23. Решить методом Эйлера дифференциальное уравнение $y' = x^2 + 3y$ на отрезке [0;1] с начальным условием y(0) = 2, приняв шаг h = 0,2. y(1) принимает значение равное:
 - 1) 24,5268; 2) 23,1561; 3) 22,2893;
- 4) 21,3294
- 5) 20,3381.
- 24. Метод Эйлера решения дифференциальных уравнений заключается в циклическом применении пары формул:
 - 1) $\Delta y_k = h \cdot f(x_k, y_k), y_{k+1} = y_k \Delta y_k, k = 0, 1, 2, \dots$
 - 2) $\Delta y_k = h \cdot f(x_k, y_k), y_{k+1} = y_k \cdot \Delta y_k, k = 0, 1, 2, \dots$
 - 3) $\Delta y_k = 0.1 \cdot f(x_k, y_k) \cdot h$, $y_{k+1} = y_k + \Delta y_k$, k = 0.1, 2...

4)
$$\Delta y_k = \frac{h}{2} \cdot f(x_k, y_k), y_{k+1} = y_k - \Delta y_k, k = 0, 1, 2, \dots$$

5)
$$\Delta y_k = h \cdot f(x_k, y_k), y_{k+1} = y_k + \Delta y_k, k = 0, 1, 2...$$

- 25. Используя метод Эйлера-Каши для дифференциального уравнения $y'=x^2+3y$ отрезке [0;1] с начальным условием y(0)=2, приняв шаг h=0.2, найдем y(0,2).
 - 1) 1,932; 2) 2,221; 3) 3,564; 4) 4,821; 5) 5,728.
- 26. Уравнение с частными производными вида $\frac{\partial^2 u}{\partial v^2} + \frac{\partial^2 u}{\partial v^2} = 0$ называется уравнением:
 - 1) переноса;
- 2) волновым;
- 3) теплопроводности;

- 4) Лапласа;
- 5) Пуассона.
- Применяя метод сеток, найти решение уравнения Лапласа в точке р квадрата 27. при краевых условиях, указанных на рисунке.

- 1) 25,19; 2) 15,17;
- 3) 26,09

4

- 4) 21,19;
- 28.Для функции u=u(x,y) частная производная $\left(\frac{\partial u}{\partial x}\right)_{ii}$ может быть заменена разностным отношением:

1)
$$\left(\frac{\partial u}{\partial x}\right)_{ik} \approx \frac{u_{i+1,k} - u_{i-1,k}}{h}$$
;

$$2) \left(\frac{\partial u}{\partial x} \right)_{ik} \approx \frac{u_{i+1,k} - u_{i-1,k}}{2h};$$

3)
$$\left(\frac{\partial u}{\partial x}\right)_{ik} \approx \frac{u_{i+1,k} + u_{i-1,k}}{h}$$
;

4)
$$\left(\frac{\partial u}{\partial x}\right)_{i,k} \approx \frac{u_{i+1,k} + u_{i-1,k}}{2h}$$
;

5)
$$\left(\frac{\partial u}{\partial x}\right)_{ik} \approx \frac{u_{i,k+1} - u_{i,k-1}}{2h}$$
.

29. Используя метод наименьших квадратов, найти приближающую функцию в виде линейной функции F(x, a, b) = ax + b для функции y = f(x), заданной в табличном виде:

X	1,1	1,7	2,4	3,0
у	0,3	0,6	1,1	1,7

1)
$$y = 2,375x + 1,243$$
; 2) $y = -$

2)
$$y = -0.2x + 1.8$$
;

3)
$$y = 0.735x - 0.581$$
;

4)
$$y = 0.735x + 0.581$$
;

5)
$$y = 2,375x - 1,243$$
.

30. Для функции, заданной таблицей

X	1	1,5	2	3
у	0,2	0,5	1,1	2,2

построена приближающая линейная функция F(x)=0.8x-1. Найти сумму квадратов отклонений σ .

1) 1,14; 2) 1,25; 3) 1,36; 4) 1,42; 5) 1,58.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

А) Основная литература:

- 1. Лапчик, М. П. Численные методы [Текст]: учебное пособие для вузов / М. П. Лапчик, М. И. Рагулина Е. К. Хеннер; под ред. М. П. Лапчика. Изд. 5-е; стер. Москва: Академия, 2009. 384 с. (Количество: 15)
- 2. Киреев, В. И. Численные методы в примерах и задачах [Текст] : учебное пособие для вузов /В. И. Киреев. Изд. 3-е, стер. Москва : Высшая школа, 2008. 480 с. (Количество: 5)
- 3. Бахвалов, Н. С. Численные методы [Электронный ресурс] : учебное пособие / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. Электрон. текстовые данные. Москва : Лаборатория знаний, 2015. 637 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=70767

Б) Дополнительная литература

- 1. Решетникова, Е. В. Вычислительная математика [Электронный ресурс] : учебное пособие : текстографические учебные материалы / Е. В. Решетникова, Т. В. Бурнышева ; ФГБОУ ВПО "КемГУ", Новокузнецкий институт (филиал). Новокузнецк : [НФИ КемГУ], 2015 http://moodle.nkfi.ru/mod/page/view.php?id=2148
- 2. Маничев, В. Б. Численные методы. Достоверное и точное численное решение дифференц.и алгебр.уравнений в САЕ-системах САПР [Электронный ресурс] : учебное пособие / В. Б. Маничев, В. В.Глазкова, И. А. Кузьмина Эл. текстовые данные. Москва: НИЦ ИНФРА-М, 2016. 152 с. -(ВО:Бакалавр.) ISBN 978-5-16-010366-2. Режим доступа: http://znanium.com/catalog.php?bookinfo=423817
- 3. Слабнов, В. Д. Численные методы [Электронный ресурс] : лекции: учебное пособие / В. Д. Слабнов ; Институт экономики, управления и права (г. Казань). Электронные текстовые данные. Казань :Познание, 2012. 192 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=364221
- 4. Колдаев, В. Д. Численные методы и программирование [Электронный ресурс]: учебное пособие / В. Д. Колдаев; под ред. Л. Г. Гагариной. Эл. текстовые данные. Москва : ФОРУМ : ИНФРА-М, 2014. -336 с. (Профессиональное образование). ISBN 978-5-8199-0333-9. Режим доступа: http://znanium.com/catalog.php?bookinfo=452274
- 5. Фомина А.В. Лабораторные работы по курсу «Численные методы»: методические рекомендации для студентов дневного отделения физико математического факультета. Новокузнецк: Издательство РИО КузГПА. 2008. 32 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1.www.nns.ru Национальная электронная библиотека.
- 2.www.rambler.ru/ Поисковая система.
- 3.www.yandex.ru/ Поисковая система.
- 4. http://mathematics.ru/ Учебный материал по различным разделам математики.
- 5<u>www.exponenta.ru</u> Примеры применения математических пакетов в образовательном процессе.

6.<u>www.fismat.ru</u> - Высшая математика для студентов – интегралы и производные, ряды; лекции, задачи, учебники.

9. Методические указания для обучающихся по освоению дисциплины (модуля)

9.1 Методические рекомендации для студентов

Рабочая программа дисциплины "Численные методы" призван помочь студентам физикоматематического факультета в организации самостоятельной работы по освоению курса. дисциплины составлена в соответствии с Рабочая программа государственным образовательным стандартом ВПО. В ней представлены подробный план лекций по каждой изучаемой теме, список основной и дополнительной литературы; материалы по подготовке к содержащие планы проведения занятий, занятиям, самостоятельной работы. В комплексе представлены задания и тест, охватывающие все разделы курса, которые позволят проверить уровень усвоения изученного материала. Прежде чем приступить к выполнению заданий для самостоятельной работы, студентам необходимо прослушать курс лекций по данному разделу, изучить рекомендуемую литературу и приступить к выполнению задания. Рабочая программа содержит также список вопросов к зачету по изучаемой дисциплине.

Студентам, изучающим дисциплину "Численные методы" рекомендуется: обязательное посещение лекций преподавателя, подготовка к лабораторным занятиям (проработка материалов лекций, рекомендованной учебной литературы), активная работа на лабораторных занятиях, выполнение и сдача в указанный преподавателем срок домашних и контрольных работ, заданий для самостоятельной работы.

На лабораторных занятиях задания рассчитаны на самостоятельную разработку программ, их отладку и тестирование. Выбор программного средства для решения поставленной задачи студентом осуществляется по своему усмотрению (это может быть электронная таблица; язык Паскаль с его графическими возможностями; программные средства, ориентированные на реализацию математических расчетов; языки визуального программирования, позволяющие создавать современный пользовательский интерфейс и др.). Наилучший вариант – использование студентом в ходе реализации практического задания нескольких программных средств. При выполнении лабораторного практикума задачей студента является получение достоверного результата с контролем его точности. Важное значение имеет форма представления результатов, которая указывается студентам преподавателем.

9.2 Методические рекомендации для преподавателей

Курс "Численные методы" включает в себя изучение элементов теории погрешностей и теории приближений, основные численные методы алгебры и математического анализа. В нем рассматриваются различные методы построения интерполяционных многочленов, вопросы численного дифференцирования и интегрирования, а также численного решения дифференциальных уравнений и уравнений в частных производных. Главная особенность обучения основам численных методов связана с интенсификацией процессов использования различных специализированных математических пакетов и систем программирования вычислительных методов, как инструмента решения прикладных задач. Теория

приближенного решения математических задач постоянно пополняется все более совершенными численными методами. Все это требует определенного уровня понимания, который необходимо обеспечить в рамках дисциплины "Численные методы".

Дисциплина основывается на знаниях, полученных студентами при изучении дисциплин "Алгебра", "Математический анализ". Навыки, полученные при изучении дисциплины "Численные методы", используются студентами при выполнении курсовых и дипломных работ.

Программа обучения курса "Численные методы" должна состоять из следующих этапов. Во-первых, это освоение программирования на ЭВМ и использования математических пакетов и программных средств, ориентированных на реализацию математических расчетов. Во-вторых, это основы численных методов, содержащие изложение классических задач алгебры и математического анализа. Основное внимание должно быть уделено выработке практических навыков у студентов. Теоретическое обоснование методов рекомендуется приводить лишь в той мере, в какой оно необходимо для лучшего усвоения и практического применения. При изучении дисциплины необходимо обращать внимание студентов на ее прикладной характер, на то, где и когда изучаемые теоретические положения и практические умения могут быть использованы в будущей деятельности, а также подчеркивать особенности, возникающие при программировании вычислительных задач. Изложение материала необходимо вести в форме, доступной пониманию студентов. Методы изложения учебного материала следует выбирать, исходя из того, какой из них наиболее приемлем для лучшего контакта со студентами и лучшего усвоения ими учебного материала. С целью систематизации и закрепления полученных теоретических знаний и практических умений рекомендуется предусмотреть самостоятельную работу студентов. Для проверки знаний студентов рекомендуется по окончании изучения разделов проводить контроль, контроль следует проводить в виде тестовых заданий, контрольных и лабораторных работ, устных собеседований.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

- 1. оборудованные аудитории (персональные компьютеры);
- 2. аудиовизуальные, технические и компьютерные средства обучения (компьютерная система автоматизации, математических вычислений Derive, профессиональная среда для выполнения вычислений Maple, электронные таблицы Excel, система программирования: Turbo Pascal, объектно-ориентированная среда: Delphi) и др;
- 3. использование слайд-презентаций при проведении лекций и отдельных семинаров;
- 4. Использование визуальных материалов на DVD-носителях;
- 5. Консультация по вопросам дисциплины посредством электронной почты.

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Для осуществления образовательного процесса по дисциплине «Численные методы» факультет располагает:

- а) аудиториями для проведения лекционных занятий, оснащённых мультимедийным оборудованием, а также системой звукоусиления и микрофонами при проведении поточных занятий (ауд. 7203; 7207; 7114);
- б) компьютерными классами для проведения лабораторных занятий, оснащенными компьютерами с минимальными системными требованиями: Процессор: 300 МНz и выше; оперативная память: 128 Мб и выше; другие устройства: звуковая карта, колонки; устройство для чтения DVD-дисков (ауд.7208)

12. Иные сведения и (или) материалы

12.1. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

В рамках учебного курса используются элементы таких педагогических технологий, как проблемное обучение, ИКТ-технологии, следующие виды активных и интерактивных форм проведения занятий: разбор конкретных ситуаций, технология сотрудничества (работа в малых группах), коллективная мыслительная деятельность, тематические дискуссии.

Разбор конкретных ситуаций заключается в анализе и оценке различных численных методов решения задач вычислительной математики.

Тематические дискуссии предполагают обсуждение проблемных вопросов между группами обучающихся, аргументированно отстаивающих определённую точку зрения.

Проблемное обучение сводится к стимулированию студентов к самостоятельной «добыче» знаний, необходимых для решения конкретной задачи.

Технология сотрудничества (работа в малых группах) состоит в формировании умений эффективно работать сообща во временных командах и группах и добиваться качественных результатов при выборе метода решения задачи, алгоритма ее решения и реализации решения с использованием ЭВМ.

12.2 Занятия, проводимые в интерактивных формах

№ п/п	Раздел, тема дисциплины	Объем аудиторной работы в интерактивных формах по			Формы работы
		видам занятий (час.)			
		Лекц.	Практич.	Лабор.	
I.	Решение нелинейных	2			Дискуссия
	уравнений и систем				
	уравнений.				
	ИТОГО по дисциплине:	2			

12.3. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Для обеспечения образования инвалидов и обучающихся с ограниченными возможностями здоровья разрабатывается адаптированная образовательная программа, индивидуальный учебный план с учетом особенностей их психофизического развития и состояния здоровья.

Обучение обучающихся с ограниченными возможностями здоровья осуществляется на основе образовательных программ, адаптированных для обучения указанных обучающихся.

Обучение по образовательной программе инвалидов и обучающихся с ограниченными возможностями здоровья осуществляется факультетом с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Университетом создаются специальные условия для получения высшего образования по образовательным программам обучающихся с ограниченными возможностями здоровья..

Составитель (и): Фомина А.В., доцент каф. МиМОМ

(фамилия, инициалы и должность преподавателя (ей))