Подписано электронной подписью: Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИЙ $^{471086f_{2}d29a3h30e244c728ahc3661ah35c9d50210dcf0e75e03a5b6fdf6436}$

Федеральное государственное бюджетное образовательное учреждение высшего образования

> «Кемеровский государственный университет» Новокузнецкий институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Кемеровский государственный университет»

Факультет информационных технологий Кафедра информационных систем и управления им. В.К. Буторина

> **УТВЕРЖЛАЮ** Декан Т.В. Бурнышева « 27 » февраля 2018 г.

Рабочая программа дисциплины

Б1.В.11 ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ

Направление подготовки 09.03.03 Прикладная информатика

Направленность (профиль) подготовки Прикладная информатика в технике и технологиях

Уровень бакалавриата

Программа Академический бакалавриат

Квалификация выпускника Бакалавр

> Форма обучения очная

> Год набора 2015

Содержание

1. Перечень планируемых результатов обучения по дисциплине,
соотнесенных с планируемыми результатами освоения образовательной
программы
2. Место дисциплины в структуре ООП бакалавриата 4
3. Объем дисциплины в зачетных единицах с указанием количества
академических часов, выделенных на контактную работу обучающихся с
преподавателем (по видам занятий) и на самостоятельную работу
обучающихся5
3.1. Объём дисциплины по видам учебных занятий (в часах)5
4. Содержание дисциплины (модуля), структурированное по темам
(разделам) с указанием отведенного на них количества академических часов
и видов учебных занятий
4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных
занятий (в академических часах)6
4.2 Содержание дисциплины, структурированное по разделам (темам) 7
5. Перечень учебно-методического обеспечения для самостоятельной
работы обучающихся по дисциплине (модулю)10
6. Фонд оценочных средств для проведения промежуточной аттестации
обучающихся по дисциплине (модулю)
6.2. Типовые контрольные задания или иные материалы11
6.2.1. Зачет
6.2.2 Экзамен
6.2.3 Тест
6.3. Методические материалы, определяющие процедуры оценивания
знаний, умений, навыков и (или) опыта деятельности, характеризующие
этапы формирования компетенций46
7. Перечень основной и дополнительной учебной литературы,
необходимой для освоения дисциплины (модуля)47
8. Перечень ресурсов информационно-телекоммуникационной сети
«Интернет» (далее - сеть «Интернет»), необходимых для освоения
дисциплины (модуля)
9. Методические указания для обучающихся по освоению дисциплины . 48
10 Перечень информационных технологий, используемых при
осуществлении образовательного процесса по дисциплине (модулю),
включая перечень программного обеспечения и информационных
справочных систем (при необходимости)
12 Иные сведения и (или) материалы
12.1 перечень образовательных технологий, используемых при
осуществлении образовательного процесса по дисциплине50

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Целью курса является приобретение студентами теоретических знаний и практических навыков в области проектирования современных информационных систем, используемых для решения проблем (задач), в различных областях деятельности.

В результате освоения ООП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине (модулю) (таблица 1).

Таблица 1 – Формируемые компетенции

Код Формируе-		Результат освоения дисциплины
компе- мые компе-		
тенции	тенции	
ПК-1	способно- стью прово- дить обсле- дование ор- ганизаций, выявлять информаци- онные по- требности пользовате- лей, форми- ровать тре- бования к информаци- онной си- стеме	Знать методы обследования организаций. Уметь выявлять информационные потребности пользователя. Владеть навыками формирования требований к информационной системе.
ПК-2	способно- стью разра- батывать, внедрять и адаптировать прикладное программное обеспечение	Знать методы разработки, внедрения и адаптации прикладного программного обеспечения. Уметь внедрять и адаптировать прикладное программное обеспечение. Владеть навыками внедрения и адаптации прикладного программного обеспечения в различных сферах профессиональной деятельности.
ПК-3	способно- стью проек- тировать ИС в соответ-	Знать методы проектирования ИС в соответствии с требованиями предприятия или организации. Уметь проектировать информационные системы для предприятия или организации с учетом их деятельности. Владеть навыками проектирования информационных

Код	Формируе-	Результат освоения дисциплины
компе-	мые компе-	
тенции	тенции	
	ствии с профилем подготовки по видам обеспечения	систем в соответствии с требованиями предприятия или организации.
ПК-4	способно- стью доку- ментировать процессы со- здания ин- формацион- ных систем на стадиях жизненного цикла	Знать методы документирования процессов создания ИС на всех стадиях жизненного цикла. Уметь документировать процессы создания ИС. Владеть навыками ведения документации процессов создания ИС на всех стадиях жизненного цикла.
ПК-7	способно- стью прово- дить описа- ние при- кладных процессов и информаци- онного обес- печения ре- шения при- кладных за- дач	Знать основные прикладные процессы и информационное обеспечение решения прикладных задач. Уметь проводить описание прикладных процессов. Владеть навыками использования информационного обеспечения для решения прикладных задач предприятий или организаций.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина Б1.Б.17 «Проектирование информационных систем» относится к базовой части учебного плана.

Дисциплина «Проектирование информационных систем» участвует в формировании компетенций ПК-1, ПК-2, ПК-3, ПК-4, ПК-7 совместно с дисциплинами: «Проектный практикум: адаптация информационной системы», «Организация электронного документооборота», «Настройка и сопровождение информационных систем», «Высокоуровневые методы информатики и программирования», «Разработка и стандартизация программных средств и информационных технологий».

Дисциплина изучается на 2 и 3 курсах в 4 и 5 семестрах соответственно.

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 8 зачетных единиц (ЗЕ), 288 академических часов.

3.1. Объём дисциплины по видам учебных занятий (в часах)

	Всего часов
Объём дисциплины	Очная форма
Общая трудоемкость дисциплины	288
Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего)	146
Аудиторная работа (всего):	
в т. числе:	
Лекции	54
Семинары, практические занятия	
Практикумы	
Лабораторные работы	92
Внеаудиторная работа (всего):	140
в том числе, индивидуальная работа	
обучающихся с преподавателем:	
Курсовое проектирование	36
Групповая, индивидуальная консуль-	
тация и иные виды учебной деятельно-	
сти, предусматривающие групповую	
или индивидуальную работу обучаю-	
щихся с преподавателем	
Творческая работа (эссе)	
Самостоятельная работа обучающихся	106
(всего)	
Вид промежуточной аттестации обучающе-	зачет – 4 семестр,
гося	экзамен, курсо-
	вая работа – 5
	семестр

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в академических часах)

Очная формы обучения

№ п/ п	Раздел Дисциплины	э э Эбщая трудоёмкость (часах)			остоятель- учающих- мкость ах) самостоя- тельная работа обучаю-	Формы те- кущего кон- троля успе- ваемости
1.	Проектирование информационной системы (ИС)	21	6	10	5	Тест
2.	Основные компоненты технологии проектирования ИС	21	6	10	5	Тест
3.	Каноническое проектирование ИС	30	6	18	6	Тест
4.	Итого за 4 семестр	72	18	38	16	Зачет
5.	Состав, содержание и принципы организации информационного обеспечения ИС	41	6	10	25	Тест
6.	Типовое проектирование ИС	51	10	16	25	Тест
7.	Автоматизированное проектирование ИС с использованием CASE-технологии	46	10	16	20	Тест
8.	Межсистемные интерфейсы и драйверы	42	10	12	20	Тест
9.	Экзамен	36				

№ п/ п	Раздел Дисциплины	од в Общая трудоёмкость (часах)	вклі ную ся	ючая само работу об я и трудое (в часа горные ные за-		Формы те- кущего кон- троля успе- ваемости
				занятия		
10.	Итого за 5 семестр	216	36	54	90	36 (Экзамен)
11.	Итого	288	54	92	106	

4.2 Содержание дисциплины, структурированное по разделам (темам)

Содержание лекционных занятий

<u>Тема 1.</u> Проектирование информационной системы (ИС)

Понятия и структура проекта ИС. Требования к эффективности и надежности проектных решений.

Тема 2. Основные компоненты технологии проектирования ИС

Методы и средства проектирования ИС. Краткая характеристика применяемых технологий проектирования. Требования, предъявляемые к технологии проектирования ИС. Выбор технологии проектирования ИС.

Тема 3. Каноническое проектирование ИС

Стадии и этапы процесса проектирования ИС. Состав работ на предпроектной стадии, стадии технического и рабочего проектирования, стадии ввода в действие ИС, эксплуатации и сопровождения. Состав проектной документации.

<u>Тема 4.</u> Состав, содержание и принципы организации информационного обеспечения ИС

Проектирование документальных БД: анализ предметной области, разработка состава и структуры БД, проектирование логико-семантического комплекса.

Проектирование фактографических БД: методы проектирования; концептуальное, логическое и физическое проектирование. Принципы и особенности проектирования интегрированных ИС. Система управления информационными потоками как средство интеграции приложений ИС. Методы и

средства организации метаинформации проекта

Тема 5. Типовое проектирование ИС

Понятие типового элемента. Технологии параметрически-ориентированного и модельно-ориентированного проектирования.

<u>Тема 6.</u> Автоматизированное проектирование ИС с использованием CASE-технологии.

Функционально-ориентированный и объектно-ориентированный подходы. Содержание RAD-технологии прототипного создания приложений.

<u>Тема 7.</u> Межсистемные интерфейсы и драйверы

Интерфейсы в распределенных системах. Стандартные методы совместного доступа к базам и программам в сложных информационных системах (драйверы ODBC, программная система CORBA и др.).

Содержание практических работ

Тема 1.

Разработка пользовательского интерфейса в инструментальной среде быстрой разработки приложений Delphi.

Способы оформления приложений: заставка в приложении, формы типа Password Dialog, информационное окно «О программе», стандартные диалоги.

Способы оформления приложений с помощью одностраничных и многостраничных панелей (элементы управления TabControl и PageControl).

Способы оформления приложений с помощью строки состояния (компонент StatusBar).

Способы оформления приложений. Тип SDI – однодокументное приложение, панель инструментов ToolBar.

Способы оформления приложений. Тип MDI – многодокументное приложение.

Использование в приложениях элементов: индикаторы, полосы прокрутки, счетчик.

Тема 2.

Описание организационной структуры для различных типов организационных структур, описание материальных потоков, описание документооборота (по вариантам по предложенному условному описанию предметной области) с помощью пакета для создания диаграмм Microsoft Visio.

Разработка документации «Технический проект».

Разработка документа «Постановка задачи» как основного компонента локальных проектных решений для разработки информационного, про-

граммного и технологического обеспечения (по вариантам по предложенному условному описанию предметной области).

Разработка документации «Рабочий проект»: документации для пользователя (Руководство пользователя) с использованием утилиты HelpScribe, руководства программиста. Разработка справочной системы (hlp-файл) ИС. Разработка инсталляционного пакета для программного приложения (файлы setup.exe или install.exe).

Тема 3.

Разработка документа "Описание организации информационной базы" с использованием пакета для создания диаграмм Microsoft Visio. Разделы документа: логическая структура (описание состава данных, их форматов и взаимосвязей между данными); физическая структура (для внутримашинной информационной базы) (описание избранного варианта расположения данных на конкретных машинных носителях); организация ведения информационной базы (последовательность процедур при создании и обслуживании базы, регламент выполнения процедур и средств защиты базы от разрушения и несанкционированного доступа, указание связей между массивами баз данных, и массивами входной информации).

Тема 4.

Проектирование макетов экранных форм первичных документов (по вариантам) в соответствии с требованиями к информационной и служебной частям макета в инструментальной среде быстрой разработки приложений Delphi.

Создание отчетов (простых, с группированием данных, композитных отчетов, отчетов для связанных наборов данных) с помощью генератора отчетов QReport и с помощью визуального дизайнера Rave Reports. Аналитические отчеты. Многомерный анализ данных с помощью Decision Cube.

Тема 5.

Определение состава и структуры фактографической БД на основе первичного и результатного документа по определенной предметной области (по вариантам).

Создание ER-модели данных в пакете Microsoft Visio.

Создание ER-модели данных с использованием CASE-средства Allfusion Process Modeler ERwin. Генерация БД с помощью Case-средства.

Создание ER-модели данных с использованием CASE-средства PowerDesigner. Генерация БД с помощью Case-средства.

Тема 6.

Методология функционального моделирования IDEF. Сравнительный анализ Case-систем и инструментальных средств структурного анализа и проектирования (диаграммы: BFD, DFD, STD, ERD, SSD) для автоматизированного проектирования ИС. Оценка и критерии их выбора.

Использование методологии IDEF0, DFD и программного пакета Microsoft Visio для анализа предметной области (по предложенным вариантам условного описания предметных областей). Создание диаграмм.

Проектирование функциональной модели ИС (по предложенным вариантам условного описания предметных областей) в Case-средстве Allfusion Process Modeler BPwin.

Тема 7.

Использование Case-системы PowerDesigner для проектирования и разработки программного обеспечения. Создание моделей: Business Process Model; Free Model; Multi-Model Report; Object-Oriented Model.

Создание моделей с использованием языка UML в Microsoft Visio.

Основы работы в Case-средстве Rational Rose. Разработка диаграмм на языке UML в Rational Rose (по вариантам): диаграмма вариантов использования; диаграмма состояний; диаграмма деятельностей; диаграмма компонентов.

Организация доступа к базам данных в ИС средствами интегрированной среды разработки Delphi, MS Office. Использование интерфейса ADO. Использование COM-технологий в Delphi. Установка в Delphi связи с сервером MS Excel/Word. Разработка программного модуля вывода отчета в MS Excel/Word. Создание динамической библиотеки ввода логина и пароля для идентификации пользователя при загрузке приложения.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Для обеспечения самостоятельной работы обучающихся по дисциплине разработано учебно-методическое обеспечение в составе:

- 1. Типовые задания для подготовки к соответствующим контрольным мероприятиям, приведенные в разделе 6 рабочей программы дисциплины (РПД) и учебно-методическом комплексе (УМК) по дисциплине.
- 2. Учебно-методический комплекс, находящийся в свободном доступе во внутренней сети вуза по адресу: \\led\\litera\ ФИТ\ Кафедра информационных систем и управления \УМК

Состав УМК: РПД, методические указания по изучению дисциплины для студентов, папки с файлами «Курс лекций», «Задачи СРС», тестовые задания.

10

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

6.1 Паспорт фонда оценочных средств по дисциплине (модулю)

<u>№</u>	Контролируемые разделы	Код контролируе-	Наименование оце-
Π/Π	(темы) дисциплины	мой компетенции	ночного средства
	(результаты по разделам)		
1.	Проектирование информа-	ПК-1, ПК-2, ПК-3,	тест; электронный
	ционной системы (ИС)	ПК-4, ПК-7	практикум
2.	Основные компоненты тех-	ПК-1, ПК-2, ПК-3,	тест; электронный
	нологии проектирования	ПК-4, ПК-7	практикум
	ИС		
3.	Каноническое проектиро-	ПК-1, ПК-2, ПК-3,	тест; электронный
	вание ИС	ПК-4, ПК-7	практикум
4.	Состав, содержание и	ПК-1, ПК-2, ПК-3,	тест; электронный
	принципы организации ин-	ПК-4, ПК-7	практикум
	формационного обеспече-		
	ния ИС		
5.	Типовое проектирование	ПК-1, ПК-2, ПК-3,	тест; электронный
	ИС	ПК-4, ПК-7	практикум
6.	Автоматизированное про-	ПК-1, ПК-2, ПК-3,	тест; электронный
	ектирование ИС с исполь-	ПК-4, ПК-7	практикум
	зованием CASE-технологии		
7.	Межсистемные интерфейсы	ПК-2, ПК-3	тест; электронный
	и драйверы		практикум

6.2. Типовые контрольные задания или иные материалы

6.2.1. Зачет

Критерий оценки на зачёте складывается из следующих показателей:

- уровень усвоения теоретических знаний, показанный при ответе на вопросы во время зачёта;
- уровень практических навыков при работе в течение семестра.

Критерии оценки на зачете

«Зачтено» - выставляется студенту:

 который твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе некоторые неточности; который показал всесторонние, систематизированные, глубокие знания учебной программы дисциплины, знакомство с дополнительной литературой; за способность студента уверенно применять полученные знания при планировании своей текущей или будущей профессиональной деятельности.

«Незачтено» - выставляется студенту:

- показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, допускающему в ответе или в решении задач грубые ошибки;
- который, не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при планировании своей профессиональной деятельности.

Примерные вопросы к зачету

- 1. Понятие информационной системы. Компоненты ИС.
- 2. Классификация информационных систем.
- 3. Системный подход к созданию ИС. Структура любого промышленного предприятия, торговой организации, банка, государственного учреждения с позиций кибернетики.
- 4. Типы информационных систем на различных уровнях управления экономическим объектом.
- 5. Проектирование ИС. Объект и субъект проектирования. Технология проектирования. Методология проектирования ИС.
- 6. Определение технологии проектирования ИС. Компоненты технологии проектирования.
 - 7. Требования к технологии проектирования.
 - 8. Методология проектирования ИС.
 - 9. Методы проектирования ИС и их классификация.
 - 10. Классификация средств проектирования ИС.
 - 11. Стандарты, необходимые для выполнения конкретного проекта.
 - 12. Определение жизненного цикла ИС. Стадии ЖЦ ИС.
- 13. Системный анализ и системный синтез как основные стадии жизненного цикла ИС.
 - 14. Группы процессов, входящие в состав ЖЦ ИС.
- 15.Определение модели ЖЦ ИС. Используемые модели ЖЦ ИС в настоящее время.
 - 16. Характеристика модели проекта ИС «Водопад».
 - 17. Характеристика спиральной модели проекта ИС.
- 18. Технология канонического проектирования ИС. Стадии и этапы, до-кументационное обеспечение.

- 19. Схема последовательности шагов разработки ИС.
- 20. Системное обследование предприятия. Объекты обследования. Методы организации проведения обследования. Методы сбора материалов обследования.
 - 21. Цель этапа «Сбор материалов исследования ИС».
 - 22. Объект исследования проектировщика при проектировании ИС.
- 23. Необходимость участия пользователя (заказчика) в работах предпроектного обследования по созданию и внедрению ИС.
- 24. Состав и содержание методов организации проведения исследования.
 - 25. Методы сбора материалов обследования. Цель каждого.
 - 26. Вопросы программы обследования.
 - 27. Назначение этапа «Анализ материалов исследования».
- 28. Разработка «Технико-экономического обоснования» проекта ИС. Цель разработки, назначение и состав разделов «Технико-экономического обоснования».
 - 29. Назначение и содержание «Технического задания».
- 30. Документ «Постановка задачи» как основной компонент локальных проектных решений для разработки информационного, программного и технологического обеспечения. Состав компонентов этого документа.
 - 31. Работы этапа «Рабочего проектирования».
- 32. Состав, последовательность выполнения работ на стадии «Внедрение», состав получаемой документации.
 - 33. Определение функциональной и обеспечивающей подсистемы ИС.
- 34. Принципы выделения функциональных подсистем ИС. Примеры функциональной декомпозиции ИСУ предприятием.
- 35. Назначение и взаимосвязь функциональных и обеспечивающих подсистем ИС.
 - 36. Различие функциональных и обеспечивающих подсистем.

6.2.2 Экзамен

Экзамен проводится в устной форме. Экзаменационные билеты содержат теоретическую и практическую части.

Критерии оценки знаний студентов в целом по дисциплине:

«отпично» - выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений; ответ на экзамене характеризуется научной терминологией, четкостью, логичностью, умением самостоятельно мыслить и делать выводы.

«хорошо» - выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности;

«удовлетворительно» - выставляется студенту, показавшему фрагмен-

тарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

«неудовлетворительно» - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

Примерные вопросы к экзамену

- 1. Понятие информационной системы. Компоненты ИС.
- 2. Определение технологии проектирования ИС и метод проектирования ИС.
 - 3. Требования к технологии проектирования.
 - 4. Методология проектирования ИС.
 - 5. Классификация методов проектирования ИС.
 - 6. Классификация средств проектирования ИС.
 - 7. Стандарты, необходимые для выполнения конкретного проекта.
 - 8. Определение жизненного цикла ИС.
 - 9. Группы процессов, входящие в состав ЖЦ ИС.
 - 10. Наиболее часто используемые процессы в реальных проектах.
- 11.Определение модели ЖЦ ИС. Используемые модели ЖЦ ИС в настоящее время.
 - 12. Характеристика модели проекта ИС «Водопад».
 - 13. Характеристика спиральной модели проекта ИС.
 - 14.Стадии ЖЦ ИС.
 - 15.Схема последовательности шагов разработки ИС.
 - 16.Цель этапа «Сбор материалов исследования ИС».
 - 17. Объект исследования проектировщика при проектировании ИС.
- 18. Необходимость участия пользователя (заказчика) в работах предпроектного обследования по созданию и внедрению ИС.
 - 19. Состав и содержание методов организации проведения исследования.
 - 20. Методы сбора материалов обследования. Цель каждого.
 - 21. Вопросы программы обследования.
 - 22. Назначение этапа «Анализ материалов исследования».
 - 23. Назначение и состав разделов «ТЭО».
 - 24. Назначение и содержание «Технического задания».
 - 25. Постановка задачи, состав компонентов этого документа.
 - 26. Работы этапа «Рабочего проектирования».
- 27. Состав, последовательность выполнения работ на стадии «Внедрение», состав получаемой документации.
 - 28. Термин «Саѕе-средства», основные возможности Саѕе-средств.
 - 29. Классификация Case-средств.

- 30. Структура Case-средства.
- 31. Диаграммы «сущность-связь». Назначение.
- 32.Основные понятия и конструктивные элементы диаграммы «сущность-связь».
 - 33.Определение функциональной и обеспечивающей подсистемы ИС.
- 34. Назначение и взаимосвязь функциональных и обеспечивающих подсистем ИС.
 - 35. Различие функциональных и обеспечивающих подсистем.
 - 36.Принципы выделения функциональных подсистем.
 - 37. Структура информации. Реквизит, показатель, документ.
 - 38. Функции документа в ИС.
 - 39. Виды документов, которые можно выделить в системе документации.
 - 40. Понятие унифицированной системы документации. Виды УСД.
- 41.Определение классификатора, кодов, последовательность их составления.
 - 42. Цель разработки классификаторов в ИС.
- 43.Виды классификаторов. Характеристика общегосударственных, отраслевых и локальных классификаторов.
 - 44. Построение различных систем классификации.
 - 45.Отличие иерархической системы классификации от фасетной.
 - 46. Дескрипторная система классификации.
 - 47. Значение справочников в технологии обработки данных.
 - 48. Построение различных систем кодирования.
 - 49. Понятие системы штрихового кодирования.
 - 50.Типы и виды штрих-кодов.
 - 51.Смысл штрихового кодирования. Виды и области использования.
 - 52. Примеры использования технологии штрихового кодирования.
 - 53.Понятие макета экранной формы, типы макетов.
 - 54. Состав операций проектирования форм первичных документов.
- 55.Состав операций проектирования форм документов результатной информации.
 - 56. Электронный документ и электронная технология обработки.
- 57.Особенности проектирования макетов экранных форм для ввода первичной информации и вывода результатных документов.
 - 58.Понятие файла, виды файлов в ИС.
 - 59.Информационная база.
- 60.Архитектура Web-приложений, публикующих БД. Технология CORBA.
 - 61.Интерфейс ODBC.
 - 62. Используемые типы схем организации работ при проектировании ИС.
- 63.Основные понятия и классификация методов типового проектирования.
- 64. Сущность типового проектного решения. Основные понятия типового элементного метода проектирования.

- 65.Параметрически-ориентированный и модельно-ориентированный подходы к конфигурации типовых ИС.
- 66.Определение функционального ППП и его структура. Критерии выбора.
- 67. Сущность прототипной (RAD) технологии. Основные возможности и преимущества быстрой разработки.
- 68.Классификация инструментальных средств быстрого прототипирования ИС.
- 69.Определение функционально-ориентированной САЅЕ-технологии. Инструментальные средства функционально-ориентированного анализа и проектирования.

6.2.3 Тест

01. Раздел 1. Проектирование информационных системы (ИС)

01.01.Понятия и структура проекта ИС

- 1.Проектом ИС является
- 1. проектно-конструкторская и технологическая документация
- 2. диагностический анализ существующих систем обработки информации
- 3. рациональные технологии решения задач и получения результатной информации
- 2.Проектированием ИС является
- 1. процесс разработки технической документации
- 2. процесс преобразования входной информации об объекте проектирования в проект
- 3. документ, полученный в результате проектирования ИС
- 3. Последовательность стадий жизненного цикла ИС
- 1. внедрение проекта
- 2. предпроектная стадия
- 3. эксплуатация и сопровождение ИС
- 4. техническое проектирование
- 5. рабочее проектирование
- 4.Объектами проектирования ИС являются
- 1. технологический процесс проектирования
- 2. последовательная формализация проектных решений
- 3. функциональные подсистемы
- 4. обеспечивающие подсистемы
- 5. эксплуатация и сопровождение
- 5.По функциональному принципу выделяют следующие подсистемы ИС

- 1. бухгалтерский учет
- 2. управление капитальным строительством
- 3. перспективное планирование
- 4. сбыт и реализация готовой продукции
- 5. техническая подготовка производства
- 6. По предметному принципу выделяют следующие подсистемы ИС
 - 1. материально-техническое снабжение
 - 2. управление персоналом
 - 3. управление энергетическим хозяйством
 - 4. бухгалтерский учет
 - 5. текущее планирование
- 7.В подсистему бухгалтерского учета предприятия входят следующие задачи
 - 1. учет труда и заработной платы
 - 2. учет движения материалов на складе
 - 3. баланс
 - 4. составление плана поставок сырья и материалов
 - 5. расчет производственной программы
 - 6. учет готовой продукции
 - 7. учет расчетов с потребителями
 - 8. В оперативную обработку данных входят
 - 1. составление плана поставок сырья и материалов
 - 2. учет готовой продукции
 - 3. учет расчетов с поставщиками
 - 4. расчет себестоимости продукции
 - 5. расчет производственной программы
 - 6. учет труда и заработной платы
 - 7. учет сырья, материалов и МБП
- 9. Функциональные подсистемы экономической ИС выделяют по принципам
 - 1. предметному
 - 2. функциональному
 - 3. проблемному
 - 4. системному
 - 5. объектному
 - 6. смешанному (предметно-функциональному)

01.02.Требования к эффективности и надежности проектных решений

- 10.Отказом называется, заключающееся в нарушении работоспособности системы или элемента.
- 11. Свойство системы или элемента выполнять заданные функции

- 1. безотказность
- 2. сохраняемость
- 3. надежность
- 4. восстанавливаемость
- 5. избыточность
- 12. Основными методами обеспечения надежности системы являются
 - 1. мониторинг
 - 2. тестирование
 - 3. резервирование
 - 4. ремонт
 - 5. профилактическое обслуживание
- 13. Показателями надежности системы или элемента являются
 - 1. время работы между ремонтами
 - 2. безотказность
 - 3. вероятность безотказной работы
 - 4. сохраняемость
 - 5. средняя наработка на отказ
- 14. Типовым показателем экономической эффективности капитальных вложений в АИС является
 - 1. абсолютный показатель снижения трудовых затрат
 - 2. коэффициент снижения трудовых затрат
 - 3. индекс снижения трудовых затрат
 - 4. срок окупаемости капитальных вложений
 - 5. норма годовой прибыли предприятия

02.Раздел 2.Основные компоненты технологии проектирования ИС

- 02.01. Методы и средства проектирования ИС
- 15.По степени использования типовых проектных решений различают следующие методы проектирования ИС
 - 1. оригинальное
 - 2. объектно-ориентированное
 - 3. ручное
 - 4. типовое
 - 5. структурное
- 16. По степени адаптивности проектных решений методы проектирования классифицируются на методы структуризации

- 1. реконструкции
- 2. параметризации
- 3. реорганизации модели
- 4. реструктуризации модели
- 5. идентификации
- 17. Диаграммами, выступающими в качестве инструментальных средств объектно- ориентированного анализа и проектирования являются
 - 1. диаграммы активности (Activity diagram)
 - 2. STD (State Transition Diagram) диаграммы переходов состояний
 - 3. диаграммы прецедентов (Use-case diagram)
 - 4. DFD(Data Flow Diagram) диаграмма потоков данных
- 18. Диаграммами, выступающими в качестве инструментальных средств функционально-ориентированного анализа и проектирования являются
 - 1. диаграммы взаимодействия объектов (Interaction diagram)
 - 2. диаграммы активности (Activity diagram)
 - 3. SSD (System Structure Diagram) диаграмма структуры программного приложения
 - 4. DFD (Data Flow Diagram) диаграмма потоков данных
 - 5. Диаграммы состояний (Statechart diagram)
- 19. Для разработки классификатора деталей, которые входят в состав изделий A, B, C, ...; причем каждое изделие содержит по 100 узлов и в каждый узел входит до 1000 деталей, можно использовать ... систему классификации и кодирования
 - 1. фасетную
 - 2. серийную
 - 3. иерархическую
 - 4. разрядную
 - 5. комбинированную
- 20. Для разработки классификатора учебных групп всех факультетов института можно использовать ... систему классификации и кодирования
 - 1. иерархическую
 - 2. разрядную
 - 3. фасетную
 - 4. комбинированную
 - 5. порядковую
- 21. Для разработки классификатора «Информация по кадрам», необходимого для решения задач в подсистеме «Кадры», можно использовать ... систему классификации и кодирования
 - 1. иерархическую
 - 2. фасетную
 - 3. серийную
 - 4. дескрипторную

5. пакетную

- 22. Реквизиты, входящие в состав структуры документа, могут быть
 - 1. основаниями
 - 2. переменными
 - 3. многозначными
 - 4. нормами
 - 5. логинами
- 23. Документы в процессе их проектирования подвергаются процедуре
 - 1. нормализации
 - 2. формализации
 - 3. унификации
 - 4. стандартизации
 - 5. декомпозиции
- 24. Типовые операции обработки данных на основном этапе, выполняемые в пакетном режиме, это...
 - 1. сбор первичной информации
 - 2. ввод файлов с переменной информацией
 - 3. ввод файлов с нормативно-расценочной информацией
 - 4. ввод справочной информацией.
 - 5. печать сводки с результатной информацией
 - 6. контроль и анализ результатной сводки
- 25. Типовые операции обработки данных в пакетном режиме, выполняемые на основном этапе, это...
 - 1. редактирование файлов с результатной информацией для вывода на печать.
 - 2. подготовка сводки и передача пользователю
 - 3. загрузка информации в информационную базу
 - 4. сортировка файлов с переменной информацией по ключевому признаку
 - 5. обработка файлов с переменной информацией и получение файлов с результатной информацией
- 26.Типовые операции обработки данных в пакетном режиме, выполняемые на заключительном этапе, это...
 - 1. ввод файлов с переменной информацией
 - 2. ввод файлов с нормативно-расценочной информацией
 - 3. обработка файлов с переменной информацией и получение файлов с результатной информацией
 - 4. печать сводки с результатной информацией
 - 5. контроль и анализ результатной информации
 - 6. подготовка сводки и печать пользователю

- 27.В технологическую сеть проектирования процессов обработки данных в диалоговом режиме входят такие специфические операции, как...
 - 1. разработка «постановки задачи»
 - 2. разработка сценария диалога
 - 3. определение состава программных модулей (дерево программных модулей)
 - 4. разработка схемы взаимосвязи программных модулей и файлов
 - 5. разработка технологического обеспечения обработки данных в диалоговом режиме
- 28. Экранные формы для ввода первичной информации и выдачи результатной информации разрабатываются при...
 - 1. разработке «постановки задачи»
 - 2. разработке функциональной структуры задачи (дерево функций)
 - 3. выборе языка диалога
 - 4. разработке сценария диалога
 - 5. разработке интерфейса пользователя
 - 6. определении состава программных модулей (дерево программных модулей)
- 29.Для обработки данных в диалоговом режиме характерны такие типовые операции, как ...
 - 1. анализ результатных данных и передача пользователю
 - 2. выдача результата на печать
 - 3. обработка данных и получение результатных данных
 - 4. возврат в главное меню
 - 5. выбор способа выдачи результата
 - 6. выход из системы
 - 7. загрузка из функционального подменю ввода данных первичных документов и выбор его пункта

02.02.Краткая характеристика применяемых технологий проектирования

- 30. К индустриальной технологии проектирования ИС относятся
 - 1. оригинальное проектирование
 - 2. автоматизированное проектирование
 - 3. структурное проектирование
 - 4. объектно-ориентированное проектирование
 - 5. типовое проектирование
- 31. К ручной технологии проектирования ИС относятся
 - 1. типовое проектирование
 - 2. оригинальное проектирование
 - 3. каноническое проектирование

- 4. структурное проектирование
- 5. модульное проектирование

02.03. Требования, предъявляемые к технологии проектирования ИС

- 32. Требования, предъявляемые к средствам проектирования ИС
 - 1. охватывать в совокупности все этапы жизненного цикла ИС
 - 2. технически, программно и информационно совместимыми
 - 3. помогать планировщику ИС
 - 4. быть в своем классе инвариантными к объекту проектирования
 - 5. быть простыми в освоении и применении
- 33. К основным требованиям, предъявляемым к технологии проектирования ИС, относятся
 - 1. должна обеспечивать минимальные затраты на проектирование
 - 2. должна способствовать простому ведению документации
 - 3. должна обеспечивать информированность заказчика
 - 4. должна обеспечивать минимальные затраты на сопровождение
 - 5. должна обеспечивать автоматизацию процесса проектирования

02.04.Выбор технологии проектирования ИС

- 34. Выбираемая технология проектирования ИС должна быть основой между проектированием и сопровождением проекта.
- 35. Выбираемая технология проектирования ИС должна
 - 1. максимально отражать все этапы цикла жизни проекта
 - 2. обеспечивать участие пользователя в проектировании
 - 3. способствовать росту производительности труда проектировщиков
 - 4. минимизировать усилия проектировщиков
 - 5. обеспечивать надежность процессов проектирования и эксплуатации

03. Раздел 3. Каноническое проектирование ИС

03.01.Стадии и этапы процесса проектирования ИС

- 36. Локальными проектными решениями для экономической информационной системы (ИС) являются
 - 1. определение состава функциональных подсистем
 - 2. проектирование классификаторов
 - 3. проектирование базы данных
 - 4. разработка проектно-сметной документации
 - 5. разработка документации «Технический проект ЭИС»

- 37.Общесистемными проектными решениями для экономической информационной системы (ИС) являются
 - 1. уточнение организационной структуры предприятия
 - 2. определение состава автоматизируемых задач в подсистемах
 - 3. разработка «Постановок задач»
 - 4. разработка структуры программного обеспечения
 - 5. разработка проектно-сметной документации
 - 6. разработка документации «Технический проект ЭИС»
- 38.В состав общесистемных проектных решений для экономической информационной системы (ИС) входят
 - 1. определение состава функциональных подсистем
 - 2. проектирование классификаторов
 - 3. проектирование системы документации
 - 4. проектирование базы данных
 - 5. разработка «Плана подготовки предприятия к внедрению проекта ЭИС»
- 39. Последовательность выполнения стадий канонического проектирования ИС
 - 1. техно-рабочее проектирование
 - 2. предпроектная стадия
 - 3. разработка программного обеспечения
 - 4. разработка технико-экономического обоснования проекта
 - 5. внедрение проекта
 - 6. эксплуатация и сопровождение проекта

03.02.Состав работ на предпроектной стадии

- 40.К основным компонентам технико-экономического обоснования (ТЭО) относятся
 - 1. обоснование цели создания ЭИС
 - 2. характеристика исходных данных о предметной области
 - 3. расчет и обоснование эффективности выбранного проекта
 - 4. обоснование комплекса автоматизируемых задач
 - 5. экспериментальная проверка основных проектных решений
- 41.Последовательность выполнения работ на предпроектной стадии при каноническом проектировании ИС
 - 1. выбор метода сбора материалов обследования
 - 2. сбор и формализация материалов обследования
 - 3. выбор метода контроля
 - 4. уточнение технических средств

- 5. предварительное изучение предметной области
- 6. выбор технологии проектирования
- 7. выбор метода проведения обследования
- 8. разработка календарного плана-графика
- 9. разработка программы обследования
- 42. При системном подходе к проектированию экономической информационной системы (ЭИС) проектировщики используют следующие методы организации сбора материалов обследования
 - 1. системный
 - 2. параллельный
 - 3. бригадный
 - 4. индивидуальный
 - 5. пакетный
- 43. При системном обследовании предприятия руководителю бригады из вопросов, входящих в состав «Программы обследования», необходимо изучить следующие вопросы
 - 1. цель функционирования предприятия
 - 2. цель функционирования подразделений
 - 3. состав функций, выполняемых в подразделении
 - 4. состав документации подразделения
 - 5. организационную структуру подразделения
- 44. При системном обследовании предприятия руководителю проекта из вопросов, входящих в состав «Программы обследования», необходимо изучить следующие вопросы
 - 1. цель функционирования предприятия
 - 2. организационная структура предприятия
 - 3. цель функционирования подразделений
 - 4. организационная структура подразделения
 - 5. состав функций, выполняемых в подразделении
- 45. При системном обследовании предприятия проектировщику члену бригады из вопросов, входящих в состав «Программы обследования», необходимо изучить следующие вопросы
 - 1. цель функционирования предприятия
 - 2. цель функционирования подразделений
 - 3. состав функций, выполняемых в подразделении специалистами
 - 4. состав используемой техники при выполнении функций
 - 5. объемы информационных потоков при решении задач
 - 6. состав документации подразделения

46. При системном обследовании предприятия проектировщикам из вопросов, входящих в состав «Программы обследования», необходимо изучить следующие вопросы

А. Руководитель проекта ния

1. состав документации подразделе-

Б. Руководитель бригады тия 2. цель функционирования предприя-

В. Член бригады

3. состав функций, выполняемых в подразделении

4. состав технического проекта

5. средства проектирования

Ответ:

03.03.Состав работ на стадии технического проектирования

47. На стадии технического проектирования АИС выполняются следующие работы

- 1. разработка основных положений по новой системе
- 2. разработка форм документов и системы их ведения
- 3. разработка технологических документов и инструкций
- 4. расчет экономической эффективности
- 5. подготовка исходных оперативных данных для задач

48.В состав работ, выполняемых на стадии технического проектирования ИС, входят

- 1. разработка функциональной структуры и перечня задач
- 2. инструкция по заполнению входных оперативных документов
- 3. экспериментальная проверка основных проектных решений
- 4. разработка принципов организации информационного обеспечения
- 5. разработка проектно-сметной документации
- 49. Последовательность выполнения основных работ на этапе технического проектирования при каноническом проектировании ИС
 - 1. разработка календарного плана-графика
 - 2. изменение организационной структуры
 - 3. разработка основных положений по новой системе
 - 4. выбор технологии проектирования
 - 5. разработка классификаторов и кодов
 - 6. разработка функциональной структуры и перечня задач
 - 7. расчет экономической эффективности ИС

50.К стадии технического проектирования ИС относятся следующие работы

1. разработка классификаторов и кодов

- 2. разработка постановки решения каждой задачи
- 3. разработка плана мероприятий по подготовке к внедрению системы
- 4. разработка правовых инструкций
- 5. создание файлов информационной базы с нормативно-справочной информацией
- 51. Стадия технического проектирования ИС включает следующие работы
 - 1. ввод исходных данных в базу данных
 - 2. разработка программы проведения испытаний
 - 3. уточнение состава аппаратной платформы проекта
 - 4. изменение организационной структуры
 - 5. разработка внемашинной и внутримашинной технологии решения каждой задачи

03.04.Состав работ на стадии рабочего проектирования

- 52. На стадии рабочего проектирования ИС выполняются следующие работы
 - 1. разработка правовых инструкций
 - 2. математического обеспечения
 - 3. разработка программы проведения испытаний
 - 4. разработка программного обеспечения задач
 - 5. разработка форм документов и системы их ведения
- 53. Последовательность выполнения основных работ на этапе рабочего проектирования при каноническом проектировании ИС
 - 1. разработка правовых инструкций
 - 2. уточнение состава аппаратной платформы проекта
 - 3. разработка программного обеспечения задач
 - 4. разработка технологических документов и инструкций
 - 5. оформление рабочего проекта
 - 6. разработка постановки решения задач
- 54. Стадия рабочее проектирование ИС включает следующие работы
 - 1. разработка технологических документов и инструкций
 - 2. расчет экономической эффективности
 - 3. ввод исходных данных в базу данных
 - 4. изменение организационной структуры
 - 5. разработка классификаторов и кодов

03.05.Состав работ на стадии «Ввод в действие ИС»

- 55. В состав стадии «Ввод в действие ИС» входят этапы
 - 1. рабочее проектирование
 - 2. подготовка объекта к внедрению
 - 3. модернизация проекта

- 4. опытное внедрение
- 5. сопровождение проекта
- 56. К стадии «Ввод в действие ИС» относятся следующие этапы
 - 1. сдача проекта в промышленную эксплуатацию
 - 2. подготовка объекта к внедрению
 - 3. модернизация проекта
 - 4. опытное внедрение
 - 5. сопровождение проекта
- 57. Последовательность выполнения работ на этапе «Подготовка объекта к внедрению» при каноническом проектировании ИС
 - 1. изменение организационной структуры
 - 2. разработка правовых инструкций
 - 3. разработка постановки решения задач
 - 4. создание файлов ИБ с нормативно-справочной информацией
 - 5. набор кадров необходимой квалификации
 - 6. оборудование зданий и сооружений
 - 7. закупка и установка средств вычислительной техники
- 58. Последовательность работ на этапе «Опытное внедрение» при каноническом проектировании ИС
 - 1. создание файлов ИБ с нормативно-справочной информацией
 - 2. ввод исходных данных в ЭВМ
 - 3. проверка соответствия проектной документации стандартам
 - 4. подготовка исходных оперативных данных
 - 5. выполнение запланированного числа реализаций
 - 6. анализ результатных данных на предмет наличия ошибок
- 59. На этапе «Подготовка объекта к внедрению» выполняются следующие операции
 - 1. установка каналов связи
 - 2. подготовка исходных оперативных данных
 - 3. создание файлов с нормативно-справочной информацией
 - 4. изменение организационной структуры объекта
 - 5. проверка соответствия проектных решений ТЗ

03.06.Состав работ на стадии эксплуатации и сопровождения ИС

- 60. На этапе «Эксплуатация проекта» осуществляется
 - 1. проверка соответствия проектных решений по ИС требованиям ТЗ
 - 2. исправление частей проекта при возникновении сбоев
 - 3. регистрация сбоев в журналах
 - 4. изменение организационной структуры объекта

- 5. разработка форм документов
- 61. На этапе «Эксплуатация проекта» выполняются следующие операции
 - 1. накопление статистики о качестве работы ИС
 - 2. определение объемов доработок ИС, сроков и стоимости выполнения работ
 - 3. отслеживание технико-экономических характеристик работы ИС
 - 4. подготовка исходных оперативных данных
 - 5. разработка классификаторов и кодов
- 62. На этапе «Сопровождение и модернизация проекта» осуществляется
 - 1. анализ собранного статистического материала о качестве работы ИС
 - 2. отслеживание технико-экономических характеристик работы ИС
 - 3. регистрация сбоев в журналах
 - 4. изменение организационной структуры объекта
 - 5. делается заключение о необходимости модернизации частей или проекта ИС
- 63. На этапе «Сопровождение и модернизация проекта» выполняются следующие операции
 - 1. накопление статистики о качестве работы ИС
 - 2. определяются объемы доработок ИС, сроки и стоимость выполнения работ
 - 3. принимается решение о целесообразности утилизации ИС
 - 4. принимается решение о разработке нового проекта дл данного объекта
 - 5. проверка соответствия проектной документации стандартам

03.07.Состав проектной документации

- 64. В состав документа «Техническое задание на создание АИС» входят разделы
 - 1. описание комплекса технических средств ИС
 - 2. назначение и цели создания ИС
 - 3. описание информационного обеспечения ИС
 - 4. постановка задачи
 - 5. порядок контроля и приемки ИС
- 65. Разделами документа «Техническое задание на создание АИС» являются
 - 1. требования к системе
 - 2. описание форм документов
 - 3. описание макетов и структур файлов
 - 4. расчет экономической эффективности АИС
 - 5. состав и содержание работ по созданию АИС

2. инструкцию по организа	ации хранения информации в архиве				
3. организация работ и исп	полнители				
4. инструкцию по использованию выходных документов					
5. основание для разработки системы					
6. функциональную часть	системы				
7. обеспечивающую часть	системы				
67. В состав документа «Постанова	ка задачи» входят				
1. описание алгоритмов, и	спользуемых в задачах				
2. требования к документи	рованию				
3. организационная сущно	сть задачи				
4. назначение задачи					
5. тексты программ					
68. На стадиях канонического прое	ктирования ИС формируются документы				
А. Предпроектная стадия	1. Методика проектирования				
Б. Техно-рабочее пректирование	2. Техническое задание				
В. Стадия внедрения	3. Программа опытного внедрения				
Г. Эксплуатация и сопровождение					
1. Skensiyaraqım ir conpobondenine	рабочий проект				
	5. План мероприятий по подготовке				
	объекта к внедрению				
	6. Приказ о награждении разработчиков				
69.Разделами документа «Постанов:	ка залачи» являются				
1. контрольные примеры					
2. инструкции для пользов	ателя				
	ходных документов и сообщений				
4. перечень структурных е					
	ии сбора исходных данных				
70.Документ «Технико-экономичест стадии.	кое обоснование» проекта создается на				
71.Проектно-сметная документация	проекта создается на этапе				
72.План мероприятий по подготовко	е объекта к внедрению создается на этапе				
73.Инструкции системного програм	миста создаются на этапе 29				

Техническое задание включает в себя

1. общие положения

66.

74.В состав документов программного обеспечения входят

- 1. перечень структурных единиц информации
- 2. требования к документированию
- 3. спецификация программы
- 4. правовые инструкции
- 5. контрольные примеры

75. Документами программного обеспечения являются

- 1. описание программ
- 2. модели потоков работ
- 3. тексты программ
- 4. инструкции пользователей
- 5. планы мероприятий по внедрению

76.В состав документации рабочего проекта входят

- 1. общие положения
- 2. расчеты эффективности системы
- 3. правовые инструкции
- 4. технологическая документация
- 5. программная документация

04.Раздел 4.Состав, содержание и принципы организации информационного обеспечения ИС

04.01.Проектирование документальных Баз Данных (БД)

77. Единичным элементом данных в документальных ИС является

- 1. запись, образуемая конечной совокупностью полей атрибутов
- 2. неструктурированный на более мелкие элементы документ
- 3. поле
- 4. кортеж
- 5. таблица

78.В состав документальной ИС входят

- 1. единое хранилище документов
- 2. связанные таблицы
- 3. инструментарий поиска
- 4. инструментарий отбора необходимых документов

5. объекты-сущности

- 79.Документальная ИС представляет собой единое хранилище документов с инструментарием необходимых документов.
- 80.Соответствие найденных документов информационным потребностям пользователя называется
- 81.В зависимости от особенностей реализации хранилища документов и механизмов поиска документальные ИС подразделяют на
 - 1. системы на основе индексирования
 - 2. информационно-поисковые системы
 - 3. семантически-навигационные системы
 - 4. геоинформационные системы
 - 5. фактографические системы
- 82.Процесс отображения документа в поисковое пространство называется
- 83. Формализованное представление (описание) индекса документа называется образом документа.

04.01.01.Анализ предметной области

- 84. Предметной областью называют
 - 1. любой элемент реального мира
 - 2. совокупность элементов, информация о которых хранится и обрабатывается в АИС
 - 3. описание единиц информации, хранящихся в базе данных ИС
 - 4. диаграмму потоков данных
- 85. Для описания предметной области используют
 - 1. диаграммы распределения
 - 2. модели потоков работ
 - 3. модели организационной структуры
 - 4. диаграммы компонентов
 - 5. физические структуры данных
- 86.Инструментами описания предметной области являются
 - 1. модели потоков данных
 - 2. модели комплекса технических средств
 - 3. системы управления БД
 - 4. модели документооборота

5. диаграммы Ганта

04.01.02.Разработка состава и структуры БД

- 87. Модель организации данных в гипертекстовых справочных системах включает
 - 1. гипертекстовое оглавление
 - 2. таблицы данных
 - 3. содержательные гипертекстовые страницы
 - 4. модель потоков данных
- 88.В состав модели организации данных в гипертекстовых справочных системах входят
 - 1. хранимые процедуры
 - 2. гипертекстовый предметный указатель
 - 3. генератор выходных форм
 - 4. листовые гипертекстовые ссылки

04.01.03. Проектирование логико-семантического комплекса

- 89. Структурная составляющая информационно-поискового языка документальных информационно-поисковых систем на основе индексирования реализуется в форме
 - 1. информационно-поисковых каталогов
 - 2. наборов дескрипторов
 - 3. тезаурусов
 - 4. генеральных указателей
 - 5. предикатов
- 90.В дескрипторных языках документы и запросы представляются
 - 1. наборами лексических единиц
 - 2. понятиями-классами
 - 3. предикатами
 - 4. генеральными указателями
 - 5. отношениями
- 91.К семантическим языкам относятся
 - 1. предикатные языки
 - 2. тезаурусы
 - 3. реляционные языки
 - 4. гипертекстовые предметные указатели

04.02.Проектирование фактографических БД

- 92.СУБД представляет собой
 - 1. совокупность языковых и программных средств
 - 2. программные средства
 - 3. централизованно хранящиеся данные
 - 4. совокупность программных средств и данных, находящихся под их управлением
 - 5. технические средства
- 93. Для базы данных обязательными являются следующие признаки
 - 1. наличие структурированных данных
 - 2. отсутствие дублирования данных
 - 3. управляемая избыточность данных
 - 4. интегрированное хранение данных
 - 5. целостность данных
- 94.СУБД содержит языковые средства, ориентированные на
 - 1. конечного пользователя
 - 2. прикладного программиста
 - 3. администраторов базы данных
 - 4. технические средства отображения информации
- 95.Структурированными моделями данных являются
 - 1. сетевые
 - 2. иерархические
 - 3. реляционные
 - 4. серверные
 - 5. индексированные

04.02.01. Методы проектирования БД

- 96.В технологическую сеть проектирования процесса актуализации информационной базы (ИБ) входят
 - 1. принцип организации ИБ
 - 2. только факторы, определяющие выбор ИБ
 - 3. блок схема ИБ
 - 4. распечатка результатов контрольного примера
 - 5. прием, контроль и регистрация первичной информации
- 97. Типовыми операциями актуализации файлов с условно-постоянной и переменной информацией в БД являются
 - 1. получение первичной информации
 - 2. прием, контроль и регистрация «извещений» на изменение первичной информации
 - 3. контроль правильности ввода файла изменений и корректировка файла
 - 4. редактирование файла изменений

- 5. создание основного файла
- 6. загрузка актуализированного основного файла в БД
- 98.К типовым операциям актуализации файлов с условно-постоянной и переменной информацией в БД относятся
 - 1. прием, контроль и регистрация первичной информации
 - 2. получение первичной информации
 - 3. ввод первичной информации в ЭВМ
 - 4. ввод «извещений» в ЭВМ и создание файла изменений.
 - 5. сортировка файла изменений.
 - 6. ввод основного файла и его актуализация.
 - 99. Последовательность этапов проектирования базы данных
 - 1. анализ предметной области
 - 2. определение экономической эффективности
 - 3. определение структур данных
 - 4. разработка постановки задач
 - 5. конвертирование данных
 - 6. определение ограничений
 - 7. определение системных требований
- 100.Методами семантического контроля при вводе данных в ПЭВМ и их загрузке в БД являются
 - 1. верификация
 - 2. подсчет контрольных сумм
 - 3. логический контроль
 - 4. контроль по диапазону значений
 - 5. стандартизация
- 101.К методам семантического контроля при вводе данных в ПЭВМ и их загрузке в БД относятся
 - 1. создание двойного массива
 - 2. контроль по модулю
 - 3. балансовый
 - 4. контроль по шаблону
 - 5. контроль по конкретному значению
- 102.К инструментальным средствам частичной автоматизации проектирования БД относятся
 - 1. генераторы экранных форм СУБД
 - 2. специальные генераторы ввода-вывода
 - 3. различные утилиты
 - 4. служебные средства операционной системы
- 103. Методами синтаксического контроля при вводе данных в ПЭВМ и их за-

грузке в БД являются

- 1. контроль по модулю
- 2. балансовый
- 3. контроль по шаблону
- 4. контроль по диапазону значений
- 5. контроль по конкретному значению
- 104. Система Cognitive Forms предназначена для автоматизированного ввода в информационную систему и базу данных форм документов
 - 1. подготовленных с помощью технических средств
 - 2. подготовленных в ручную
 - 3. произвольных
 - 4. структурированных
- 105. На этапах проектирования баз данных (БД) используются следующие модели данных
- А. Инфологическое проектирование
- 1. Реляционная модель
- Б. Логическое проектирование
- 2. Модель «сущность связь»
- 3. Модель потоков данных
- 106. Этапам проектирования баз данных (БД) соответствуют следующие модели данных
- А. Концептуальное проектирование 1. Физическая модель данных
- Б. Логическое проектирование
- 2. Инфологическая модель данных
- 3. Даталогическая модель данных
- 107. Модели данных представляют
- А. Инфологическая модель 1. Описание данных на языке конкретной СУБД
- Б. Даталогическая модель 2. Обобщенное описание предметной области
- В. Физическая модель
- 3. Описание архитектуры СУБД
- 4. Описание хранимых данных
- 108.В систему сканирования данных для ввода в базы данных входят
 - 1. программы распознавания и редактирования
 - 2. распознавание по заданному описанию
 - 3. программы проверки результатов сканирования
 - 4. программы сохранения сканированной информации
 - 5. программы верификации ввода
 - 6. программы адаптации

04.02.02.Концептуальное проектирование БД

109. Использования ER-моделирования дает следующие преимущества

- 1. возможность на начальных этапах вести проектирование ИС без привязки к конкретной целевой СУБД
- 2. упрощение процесса проектирования
- 3. проведение более целенаправленного анализа предметной области
- 4. обеспечение однозначной трактовки описания предметной области
- 110.К стадии инфологического (концептуального) проектирования относятся
 - 1. определение внешних ключей
 - 2. выявление функциональных зависимостей между атрибутами
 - 3. выбор способа реализации ограничений целостности
 - 4. создание триггеров
 - 5. создание хранимых процедур

111. На стадии инфологического проектирования выполняется

- 1. выявление в предметной области объектов и связей между ними
- 2. выбор носителей для хранения базы данных
- 3. определение требуемого объема памяти
- 4. определение связей между информационными единицами
- 5. проектирование логической структуры базы данных
- 112. Как лучше всего описать структуру базы данных, которую разрабатывает Ваша проектная команда, на этапе инфологического проектирования?
 - 1. С помощью карты зависимостей данных
 - 2. С помощью диаграммы использования (Use case)
 - 3. С помощью ER-диаграммы
 - 4. Путем формирования словаря данных

04.02.03. Логическое проектирование

113.К стадии даталогического проектирования относят

- 1. выявление функциональных зависимостей между атрибутами
- 2. определение внешних ключей
- 3. выбор способа реализации ограничений целостности
- 4. создание триггеров
- 5. создание хранимых процедур

114.К стадии даталогического проектирования относят

- 1. выявление в предметной области объектов и связей между ними
- 2. выбор носителей для хранения базы данных
- 3. определение требуемого объема памяти
- 4. определение связей между информационными единицами
- 5. проектирование логической структуры данных

115. Что может означать обязательная связь типа "один к одному" между

таблицами?

- 1. модель не может быть реализована физически
- 2. требуются большее количество атрибутов
- 3. таблицы неправильно проиндексированы
- 4. следует объединить сущности с такой связью в одну
- 5. требуется большее число сущностей
- 116. Что может означать необязательная связь типа "один к одному" между таблицами?
- 1. эта связь реализует отношение наследования одной таблицы от другой
 - 2. такая связь не имеет смысла
 - 3. таблицы неправильно проиндексированы
 - 4. следует объединить сущности с такой связью в одну
 - 5. требуется большее число сущностей

04.02.04. Физическое проектирование БД

- 117.На этапе физического проектирования БД выполняют следующие действия
 - 1. выявление в предметной области объектов и связей между ними
 - 2. выбор носителей для хранения базы данных
 - 3. определение требуемого объема памяти
 - 4. определение связи между информационными единицами
 - 5. создание схемы данных
 - 118.К этапу физического проектирования БД относятся
 - 1. распределение по уровням памяти
 - 2. выбор методов доступа
 - 3. определение размеров файлов
 - 4. составление концептуальной схемы данных
 - 5. описание инфологической модели

04.03. Принципы и особенности проектирования интегрированных ИС

- 119. Корпоративная информационная система клиент серверной архитектуры должна обеспечить
 - 1. представление (презентацию) данных пользователем
 - 2. обработку данных приложением
 - 3. взаимодействие с базой данных
 - 4. взаимодействие с заказчиком проекта
 - 120. Корпоративная информационная система работает в режиме
 - 1. многопользовательском
 - 2. однопользовательском

- 3. смешанном
- 121. Клиент серверная архитектура распределена в рамках
 - 1. как локальной, так и глобальной вычислительных сетей
 - 2. только локальной вычислительной сети
 - 3. только глобальной вычислительной сети
- 122.К технологии "файл-сервер" относятся
 - 1. инициатор запросов клиент
 - 2. инициатор запросов сервер
 - 3. обработка запроса на клиенте
 - 4. обработка запроса на сервере
- 123.К технологии "клиент-сервер" относятся
 - 1. инициатор запросов клиент
 - 2. инициатор запросов сервер
 - 3. обработка запроса на клиенте
 - 4. обработка запроса на сервере

04.04.Система управления информационными потоками как средство интеграции приложений ИС

- 124.К средствам, обеспечивающим единое информационное пространство предприятия, относятся
 - 1. методические средства
 - 2. организационные средства
 - 3. телекоммуникационные средства
 - 4. средства проектирования
- 125.В состав средств, обеспечивающих единое информационное пространство предприятия, входят
 - 1. программные средства
 - 2. технические
 - 3. средства тестирования
 - 4. средства предоставления услуг
- 126. Под информационным потоком понимают совокупность....., относящихся к какому-то участку экономических расчетов.
- 127. Для представления информационных потоков на предприятии используются
 - 1. модели потоков работ
 - 2. модели потоков данных
 - 3. модели документооборота
 - 4. модели организационной структуры
 - 5. диаграммы прецедентов

04.05. Методы и средства организации метаинформации проекта ИС

- 128. Метаинформация проекта ИС содержит
 - 1. описание ИС
 - 2. описание информации, хранящейся в БД
 - 3. описание способов доступа к информации
 - 4. методы проектирования
 - 5. исходную оперативную информацию в БД
- 129. Специальная БД, в которой хранится метаинформация проекта ИС называется
- 130.В состав метаинформации ИС входит
 - 1. семантическая модель предметной области
 - 2. описание нормативно-справочной информации (НСИ)
 - 3. модель бизнес-процессов
 - 4. база данных ИС
 - 5. оценка эффективности ИС
- 131. Метаинформацией ИС является
 - 1. описание информационных ресурсов (собственных и внешних)
 - 2. описание компонентов самой ИС
 - 3. каталог предлагаемых услуг
 - 4. язык программирования
 - 5. договор на создание ИС

05.Раздел 5.Типовое проектирование ИС

- 132. Блок адаптации функционального пакета прикладных программ включает
 - 1. генератор экранных форм
 - 2. генератор отчетов
 - 3. макроязык
 - 4. язык программирования
- 133.На выбор функционального пакета прикладных программ влияют следующие параметры пакета
 - 1. особенности установки
 - 2. помощь поставщика по внедрению и поддержанию
 - 3. мощность
 - 4. отличительные признаки и свойства
 - 5. качество документации

- 134. При выборе функционального пакета прикладных программ учитывают следующие параметры пакета
 - 1. требования к техническим программным средствам
 - 2. цена
 - 3. особенности эксплуатации
 - 4. перспективы развития
 - 5. мощность
- 135. Тиражируемость является... функционального пакета прикладных программ
 - 1. функцией
 - 2. свойством
 - 3. документацией
 - 4. целью

05.01.Понятие типового элемента

- 136. Под типовым проектным решением понимают проектное решение, пригодное к использованию.
- 137.В качестве типового проектного решения может выступать реализация
 - 1. отдельных компонентов ИС
 - 2. средств отладки ИС
 - 3. взаимосвязанных комплексов компонентов ИС
 - 4. технологий проектирования
- 138.В зависимости от уровня декомпозиции ИС различают следующие методы типового проектирования
 - 1. элементный
 - 2. системный
 - 3. подсистемный
 - 4. объектный
 - 5. объектно-ориентированный
- 139. При использовании элементного метода типового проектирования ИС в качестве типового элемента используется
 - 1. типовое решение по задаче
 - 2. типовой проект для объектов управления определенной отрасли
 - 3. типовое проектное решение для функциональной подсистемы
 - 4. типовое проектное решение по отдельному виду обеспечения задачи
- 140. При использовании подсистемного метода типового проектирования ИС в качестве типового элемента используется

- 1. типовое решение по задаче
- 2. типовой проект для объектов управления определенной отрасли
- 3. типовое проектное решение для функциональной подсистемы
- 4. типовое проектное решение по отдельному виду обеспечения задачи
- 141. При использовании объектного метода типового проектирования ИС в качестве типового элемента используется
 - 1. типовое решение по задаче
 - 2. типовой проект для объектов управления определенной отрасли
 - 3. типовое проектное решение для функциональной подсистемы
 - 4. типовое проектное решение по отдельному виду обеспечения задачи

05.02. Технология параметрически-ориентированного проектирования

- 142.В состав параметрически-ориентированного пакета прикладных программ входят следующие основные модули
 - 1. репозитарий
 - 2. блок функционирования
 - 3. модель функций
 - 4. блок обработки параметров
 - 5. блок адаптации
- 143. Модулями параметрически-ориентированного пакета прикладных программ являются
 - 1. генераторы программ ИС
 - 2. модель функций
 - 3. модель данных
 - 4. модель процессов
 - 5. макроязыки проектирования и настройки типовых модулей

05.02. Технология модельно-ориентированного проектирования

- 144.В состав модельно-ориентированного пакета прикладных программ входят следующие основные модули
 - 1. репозитарий
 - 2. блок функционирования
 - 3. модель функций
 - 4. блок обработки параметров
 - 5. блок адаптации
- 145. Модулями модельно-ориентированного пакета прикладных программ являются
 - 1. генераторы программ ИС
 - 2. модель функций
 - 3. модель данных
 - 4. модель процессов
 - 5. макроязыки проектирования и настройки типовых модулей

06.00. Автоматизированное проектирование ИС с использованием САЅЕтехнологии

- 146.Признаками классификации CASE-средств по типу и архитектуре вычислительной техники являются
 - 1. ориентированные на ЭВМ
 - 2. ориентированные на локальную вычислительную сеть
 - 3. функционально ориентированные
 - 4. структурно ориентированные
 - 5. ориентированные на глобальную вычислительную сеть
- 147. При выборе CASE-средств для конкретного применения необходимо учитывать следующие характеристики
 - 1. стоимость CASE-средства
 - 2. открытость архитектуры
 - 3. адаптивность к интересам разработчиков
 - 4. возможность мониторинга выполнения проекта
 - 5. наличие базы проектных данных
- 148.На выбор CASE-средств для конкретного применения влияют следующие аспекты
 - 1. наличие интерфейсов с другими CASE-средствами
 - 2. возможности экспорта/импорта
 - 3. многопользовательский режим
 - 4. экономия времени разработчика
- 149. Современные CASE—системы по методологиям проектирования, которые они поддерживают, подразделяются на
 - 1. структурно-ориентированные
 - 2. объектно-ориентированные
 - 3. ориентированные на локальную вычислительную сеть
 - 4. ориентированные на режим реального времени разработки проекта
 - 5. ориентированные на режим объединения подпроектов

06.01. Функционально-ориентированный подход

- 150.В качестве инструментальных средств функционально-ориентированного анализа и проектирования используются
 - 1. диаграммы активности (Activity diagram)
 - 2. диаграммы состояний (Statechart diagram)
 - 3. диаграммы пакетов (Packege diagram)
 - 4. SSD (System Structure Diagram) диаграмма структуры программного приложения
 - 5. DFD (Data Flow Diagram) диаграмма потоков данных

- 151. Диаграмма структуры программного приложения
- 1. задает взаимосвязь функций и программных модулей, которые их реализуют
- 2. представляет иерархическую взаимосвязь программных модулей информационной системы
- 3. представляет общую структуру информационной системы, отражающую взаимосвязь различных задач

06.02.Объектно-ориентированный подход

- 152. Диаграмма классов представляет
 - 1. динамическое поведение системы
 - 2. функции системы
 - 3. статическую структуру системы
 - 4. Техническую реализацию системы
- 153. Диаграмма прецедентов (вариантов использования) отражает
- 1. внешнее представление поведения системы с точки зрения пользователя
- 2. совокупность информации о состоянии системы
- 3. реализацию функциональных возможностей внутри системы
- 4. физическую структуру ИС

154.Язык UML является

- 1. языком структурного моделирования
- 2. языком объектно-ориентированного моделирования
- 3. языком представления знаний
- 4. языком запросов
- 155. Диаграмма прецедентов (вариантов использования) представляет
 - 1. функциональные возможности системы
 - 2. динамику взаимодействия объектов
 - 3. архитектуру программного обеспечения системы
 - 4. физическую реализацию ИС
- 156. Диаграмма последовательностей представляет
 - 1. иерархию классов
 - 2. функции системы.
 - 3. динамику взаимодействия объектов
 - 4. физическую структуру системы
- 157.Средства языка UML используются
 - 1. для математического моделирования
 - 2. для имитационного моделирования
 - 3. для визуального моделирования
 - 4. для натурного моделирования

158. Диаграмма активности представляет

- 1. последовательность реализации системы.
- 2. последовательность операций, выполняемых системой
- 3. последовательность ввода системы в эксплуатацию.
- 4. последовательность действий по разработке системы

159. Диаграмма компонентов представляет

- 1. техническую структуру системы
- 2. физическую архитектуру программного и аппаратного обеспечения системы
- 3. физическую структуру приложения в виде программных компонентов
- 4. функциональную архитектуру системы

160. Диаграмма распределения отображает

- 1. функциональную архитектуру системы
- 2. последовательность операций, выполняемых системой.
- 3. физическую архитектуру программного и аппаратного обеспечения системы
- 4. техническую структуру системы

161. «Представление» в языке UML состоит

- 1. из модулей
- 2. из элементов моделей
- 3. из диаграмм
- 4. из совокупности сущностей

162. Модель системы в целом на языке UML состоит

- 1. из разделов
- 2. из представлений
- 3. из программ.
- 4. из модулей

06.03. Содержание RAD-технологии прототипного создания приложений

163.К технологии итерационного прототипирования ИС относится

- 1. разработка системы прототипа
- 2. разработка новой постановки задачи
- 3. разработка приложения
- 4. документирование готового приложения
- 5. демонстрация работы прототипа
- 6. доработка системы прототипа

164.К технологии традиционного прототипированя ИС относится...

1. доработка системы прототипа

- 2. демонстрация работы прототипа
- 3. разработка системы прототипа
- 4. разработка приложения
- 5. документирование готового приложения
- 6. разработка новых спецификаций-требований

165.Последовательность этапов традиционного проектирования прототипов ИС

- 1. разработка системы прототипа
- 2. доработка системы прототипа
- 3. разработка приложения
- 4. документирование готового приложения
- 5. разработка постановки задачи
- 6. разработка новой постановки задачи
- 7. демонстрация работы прототипа
- 8. разработка новых спецификаций-трбований

166. В процессе итерационного проектировании прототипов ИС в каждом цикле разработки повторяются следующие этапы

- 1. разработка системы прототипа
- 2. доработка системы прототипа
- 3. разработка приложения
- 4. документирование готового приложения
- 5. разработка постановки задачи
- 6. разработка новой постановки задачи
- 7. демонстрация работы прототипа
- 8. разработка новых спецификаций-требований

167.К основным приемам быстрой разработки прототипа ИС относятся

- 1. высокая параллельность работ
- 2. повторное использование частей проекта
- 3. низкая производительность проектировщиков
- 4. использование автоматических генераторов (мастеров)
- 5. использование большого количества технических средств
- 6. разработка приложений итерациями

168.В качестве основных приемов быстрой разработки прототипа ИС используются

- 1. обязательное вовлечение пользователей в процесс проектирования
- 2. прототипирование
- 3. разработка приложений итерациями
- 4. применение средств управления конфигурацией
- 5. расширение новыми методологиями

07. Раздел 7. Межсистемные интерфейсы и драйверы

07.01.Интерфейсы в распределенных системах

- 169. Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет ... взаимодействия систем.
- 170. Модули, реализующие протоколы соседних уровней в одном узле в модели взаимодействия открытых систем (Open System Interconnection, OSI) взаимодействуют друг с другом с помощью
- 07.02.Стандартные методы совместного доступа к базам и программам в сложных ИС
- 171. Common Gateway Interface (CGI) описывает правила взаимодействия ... с внешними программами.
 - 172. Программная технология CORBA является
 - 1. программой связи между различными инструментальными средствами
 - 2. драйвером доступа к хранилищам
 - 3. стандартным набором спецификаций для промежуточного программного обеспечения (middleware) объектного типа
- 173.Программная технология DCOM обеспечивает доступ к ... независимо то того, где они находятся в сети.
- 6.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

Текущий контроль теоретических знаний осуществляется в процессе проведения всех видов занятий.

Промежсуточный контроль теоретических знаний осуществляется путем тестового опроса по блокам тем, практических умений путем выполнения аудиторной самостоятельной работы.

При промежуточном и текущем контроле оценивается правильность ответов на вопросы теста (пункт 6.2.3).

- ➤ 70 % и более правильных ответов компетенция усвоена.
- ▶ менее 70 % правильных ответов компетенция неусвоена.

Итпосовый контроль осуществляется на зачете (4 семестр) и экзамене (5 семестр).

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

а) основная учебная литература:

1. Заботина Н. Н. Проектирование информационных систем: Учебное пособие / Н.Н. Заботина. - М.: НИЦ Инфра-М, 2013. - 331 с.: 60х90 1/16 + (Доп. мат. znanium.com). - (Высшее образование: Бакалавриат).

Режим доступа: http://www.znanium.com/bookread.php?book=371912

2. Мартишин С. А. Проектирование и реализация баз данных в СУБД MySQL с использованием MySQL Workbench: Учебное пособие / С.А. Мартишин и др. - М.: ИД ФОРУМ: НИЦ Инфра-М, 2012. - 160 с.: ил.; 60х90 1/16. - (Высшее образование). (п) ISBN 978-5-8199-0517-3, 1000 экз.

Режим доступа: http://znanium.com/bookread.php?book=318518

б) дополнительная учебная литература:

1. Пирогов В. Ю. Информационные системы и базы данных: организация и проектирование: учебное пособие [Текст]. — СПб.: БХВ-Петербург, 2009. — 528 с.: ил. — (Учебная литература для вузов). - ISBN 978-5-9775-0399-0.

Режим доступа: http://znanium.com/bookread.php?book=350672

- 2. ISO/IEC 12207:2008 «System and software engineering Software life cycle processes».
- 3. ГОСТ Р ИСО/МЭК 12207-2010 «Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств».

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), необходимых для освоения дисциплины (модуля)

- 1. AllFusion Process Modeler 7 (BPwin) // http://www.interface.ru/home.asp?artId=102
- 2. Sybase / PowerDesiner // http://www.sybase.ru/products/powerdesigner
- 3. Visio 2007: руководство для начинающих // http://office.microsoft.com/ru-ru/visio-help/HA010214494.aspx
- 4. Информационный портал Betec.Ru. Информационно-методические материалы по построению систем управления, примеры бизнес-моделей и процессов организаций // http://www.betec.ru
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс] Режим доступа: http://window.edu.ru/resource/055/78055/Блинков Ю.В. Основы теории информационных процессов и систем: учеб. пособие. Пенза: ПГУАС, 2011. 184 с.

- 6. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс] Режим доступа: http://window.edu.ru/resource/260/68260/Бурцева Е.В., Рак И.П., Селезнев А.В., Терехов А.В., Чернышов В.Н. Информационные системы: Учебное пособие. Тамбов: Изд-во ТГТУ, 2009. 128 с.
- 7. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс] Режим доступа: http://window.edu.ru/resource/883/63883 / Долженко А.И. Управление информационными системами: Курс лекций. Ростов-на-Дону: Ростовский гос. эконом. ун-т, 2007. 191 с.
- 8. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс] Режим доступа: // http://window.edu.ru/resource/013/41013 /Самардак А.С. Корпоративные информационные системы: Учебное пособие. Владивосток: ТИДОТ ДВГУ, 2003. 252 с.
- 9. Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс] Режим доступа: http://window.edu.ru/resource/174/78174/ Трутнев Д.Р. Архитектуры информационных систем. Основы проектирования: Учебное пособие. СПб.: НИУ ИТМО, 2012. 66 с.
- 10. Научно-технический и научно-производственный журнал «Информационные технологии», раздел Программирование и CASE-технологии // http://novtex.ru/IT/
- 11. Основы Программной Инженерии (по SWEBOK). Программная инженерия. Проектирование программного обеспечения (Software Design) // swebok.sorlik.ru
- 12. Программирование Realcoding.Net Программирование линейное, C++, Delphi, C#, .NET, 1c, системы, языки, обучение: Программирование для чайников и начинающих // www.realcoding.net.

Центр Информационных технологий / Библиотека on-line // http://www.citforum.ru.

9. Методические указания для обучающихся по освоению дисциплины

вид учебных	Организация деятельности студента	
занятий		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначить вопросы, термины, материал, который вызывает трудно-	

	сти, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.			
Практические	Проработка рабочей программы, уделяя особое внимание			
занятия	целям и задачам структуре и содержанию дисциплины. Конспектирование источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы, работа с текстом (раздел 7 рабочей программы).			
Подготовка к	При подготовке к зачету необходимо ориентироваться на			
зачету	конспекты лекций и рекомендуемую литературу.			

10 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

№	Наименование раздела дисциплины	Информационные техно-
		логии
1	Проектирование информационной системы (ИС)	Delphi, MS Word
2	Основные компоненты технологии проектирования ИС	MS Visio, MS Word
3	Каноническое проектирование ИС	MS Visio, MS Word
4	Состав, содержание и принципы организации информационного обеспечения ИС	MS Visio, MS Word,
5	Типовое проектирование ИС	MS Visio, MS Word
6	Автоматизированное проектирование ИС с использованием CASE-технологии	MS Visio, MS Word
7	Межсистемные интерфейсы и драйверы	Delphi, MS Word

11 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Для обеспечения высокого класса преподавания дисциплины «Проектирование информационных систем», а также для более эффективного усвоения материала студентами рекомендуется применение следующих технических средств:

- компьютер, проектор и экран для демонстрации лекции в режиме Power Point;
- компьютерный класс для проведения практических занятий;
- доступ в Интернет для студентов во время проведения практических

занятий.

12 Иные сведения и (или) материалы

12.1 перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине

В соответствии с ФГОС ВО по направлению подготовки 09.03.03 Прикладная информатика «Реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся». Проведение занятий, проводимых в интерактивной форме составляет 34 часов для очной формы обучения.

Тема	Вид заня- тия/содержание за-	Часы	Технология
Проектирование информационной системы (ИС)	Лабораторная работа. Разработка пользователь- ского интерфейса	4	Разработка пользовательского интерфейса с использованием компьютерных технологий – Delphi
Основные ком- поненты техно- логии проектиро- вания ИС	Лабораторная работа. описание организационной структуры для различных типов организационных структур	6	Анализ конкремной ситуации: обучающиеся должны описать организационную структуру выбранного ими предприятия
Каноническое проектирование ИС	Лабораторная работа. разработка документа "Описание организации информационной базы"	6	Разработка документа "Описание организации ин- формационной базы" с использованием пакета для создания диаграмм Microsoft Visio.

Состав, содержание и принципы организации информационного обеспечения ИС	Лабораторная работа. Проектирование макетов экранных форм первич- ных документов	4	Проектирование макетов экранных форм первичных документов (по вариантам) в соответствии с требованиями к информационной и служебной частям макета с использованием компьютерных технологий— Delphi
Типовое проектирование ИС	Лабораторная работа. Определение состава и структуры фактографической БД	4	Анализ конкремной ситуации: обучающиеся должны определить состав и структуру фактографической БД на основе первичного и результатного документа по определенной предметной области (по вари- антам)
Автоматизированное проектирование ИС с использованием САSE- технологии	Лабораторная работа. Методология функцио- нального моделирования IDEF	4	Анализ конкретной ситуации: обучающиеся должны построить модели бизнес- процессов выбранного предприятия
Межсистемные интерфейсы и драйверы	Лабораторная работа. Создание моделей	4	Создание различных моделей для анализа деятельности предприятия с использованием пакета для создания диаграмм Microsoft Visio.
ОТОТИ		34	

Составитель: Антонов А.В., старший преподаватель кафедры ИСУ