Подписано электронной подписью:

Вержицкий Данил Григорьевич Должность: Директор КГПИ ФГБОУ ВО «КемГУ» Дата и время: 2024-02-21 00:00:00 МИНИСТЕР (ТВОСНАЗУКИ) ОДИСТИБЛОЗОВНО ВОВТОВНО В 150-03 (10-15) (10-15 РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

> «Кемеровский государственный университет» Новокузнецкий институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Кемеровский государственный университет»

ФАКУЛЬТЕТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ, ЕСТЕСТВОЗНАНИЯ И ПРИРОДОПОЛЬЗОВАНИЯ

«УТВЕРЖДАЮ» Декан ФФКЕП В.А. Рябов «08» апреля 2020 г

Рабочая программа дисциплины

Б1.В.ДВ.11.01 Химия переходных элементов

Направление подготовки (специальность) 44.03.05 педагогическое образование (с двумя профилями подготовки)

> Направленность (профиль) подготовки биология и химия

> > Программа подготовки прикладного бакалавриата

Степень (квалификация) выпускника Бакалавр

> Форма обучения Очная

> Год набора 2018

Новокузнецк 2020

Лист внесения изменений в РПД

РПД Б1.В.ДВ.11.01 Химия переходных элементов

Изменения по годам:

Утверждена Учёным советом факультета (протокол Учёного совета факультета № 6а от 12.03.2020) на 2018 год набора Одобрена на заседании методической комиссии (протокол методической комиссии факультета № 5 от 27.02.2020) Одобрена на заседании кафедры ЕД (протокол № 6 от 20.02.2020) <u>Н.Н. Михайлова</u>

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине (модулю),	
соотнесенных с планируемыми результатами освоения образовательной программы	4
2. Место дисциплины в структуре ООП бакалавриата / специалитета / магистратуры	
(выбрать)	5
3. Объем дисциплины (модуля) в зачетных единицах с указанием количества	
академических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам занятий) и на самостоятельную работу обучающихся	5
3.1. Объём дисциплины (модуля) по видам учебных занятий (в часах)	
4. Содержание дисциплины (модуля), структурированное по темам (разделам) с	
указанием отведенного на них количества академических часов и видов учебных	
занятий	6
4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в	
академических часах)	6
4.2 Содержание дисциплины (модуля), структурированное по темам (разделам)	6
5. Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине (модулю)	10
6. Фонд оценочных средств для проведения промежуточной аттестации	
обучающихся по дисциплине (модулю)	11
6.1 Паспорт фонда оценочных средств по дисциплине (модулю)	11
6.2 Типовые контрольные задания или иные материалы	12
6.3 Методические материалы, определяющие процедуры оценивания знаний,	
умений, навыков и (или) опыта деятельности, характеризующие этапы формирования	
компетенций	14
7. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины (модуля)	16
а) основная учебная литература:	
б) дополнительная учебная литература:	16
8. Перечень ресурсов информационно - телекоммуникационной сети «интернет»,	
современных профессиональных баз данных (СПБД) и информационных справочных	
систем (ИСС) необходимых для освоения дисциплины	
9. Методические указания для обучающихся по освоению дисциплины (модуля)	18
10. Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине, используемого программного обеспечения	
11. Иные сведения и (или) материалы	<u>21</u>

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы «Химия переходных элементов»

Результаты освоения ООП (бакалавриата) определяются приобретаемыми выпускником компетенциями, т.е. его способностью применять знания, умения и личные качества в соответствии с выбранными видами профессиональной деятельности. В результате освоения данной ООП, выпускник должен обладать следующими компетенциями по дисциплине «Химия переходных элементов»:

Коды компетенц ии	Результаты освоения ООП Содержание компетенций	Перечень планируемых результатов обучения по дисциплине	
ПК-1	готовностью реализовывать образовательные программы по учебному предмету в соответствии с требованиями образовательных стандартов	Знать: содержание учебного предмета; программы и учебники по дисциплине	
СПК-3	способен реализовывать учебные программы химических курсов в различных образовательных учреждениях, применять химические и экологические знания для анализа прикладных проблем хозяйственной деятельности	знать - химию в пределах требований федеральных государственных образовательных стандартов и основной общеобразовательной программы, ее историю и место в мировой культуре и науке; уметь - использовать в профессиональной образовательной деятельности теоретические и практические знания химических наук; владеть - формами и методами обучения, выходящими за рамки учебных занятий: лабораторные эксперименты;	

1.2 получить в области осваиваемой предметной сферы следующие теоретические представления и практические умения:

знать: состав, строение и химические свойства простых веществ и химических соединений переходных элементов;

уметь: на основе изученных теорий и законов устанавливать причинно-следственные связи между строением, свойствами, применением веществ, раскрывать на примерах взаимосвязь теории и практики;

владеть: приемами практического владения химической посудой, лабораторным оборудованием и приборами, проводить лабораторные эксперименты.

2. Место дисциплины в структуре ООП бакалавриата

Данная дисциплина относится дисциплинам по выбору Дисциплина изучается на 3 курсе в 5 семестре.

Место дисциплины в формировании вида деятельности и готовности к решению профессиональных задач:

Закрепленные	Формируемый вид	Формируемые профессиональные	Трудовые действия (ПС)
компетенции	(тип)	задачи	
(код и название)	профессиональной		
	деятельности		
ПК-1	Педагогическая	осуществление обучения и	Осуществление
готовностью	деятельность	воспитания в сфере образования в	профессиональной
реализовывать		соответствии с требованиями	деятельности в соответствии
образовательные		образовательных стандартов;	с требованиями
программы по			федеральных
предмету в			государственных
соответствии с			образовательных стандартов
требованиями			дошкольного, начального
образовательных			общего, основного общего,
стандартов			среднего общего
			образования;

Цель дисциплины «Химия переходных элементов» являются: расширение теоретических знаний, полученных ранее при изучении общехимических дисциплин, а именно систематизация и углубление знаний студентов о d-,f — элементах и их соединениях. Формирование у студентов представления об анализе свойств химических элементов, а также форм и свойств их соединений на основе периодического закона Д.И.Менделеева, в соответствии с положением элементов и их групп в периодической системе. Является базой для изучения следующих дисциплин: «Аналитическая химия», «Прикладная химия и органический синтез», «Физическая и коллоидная химия».

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц (3E), 144 академических часа.

3.1. Объём дисциплины (модуля) по видам учебных занятий (в часах)

		Всего часов	
Объём дисциплины	для	очной	формы
	обуч	ения	
Общая трудоемкость дисциплины		144	
Контактная работа обучающихся с преподавателем (по видам			
учебных занятий) (всего)			
Аудиторная работа (всего):		42	
в т. числе:			
Лекции		12	
Семинары, практические занятия		30	
Практикумы		-	
Лабораторные работы		-	
Внеаудиторная работа (всего):			
В том числе, индивидуальная работа обучающихся с			
преподавателем:			

		Всего часов		
Объём дисциплины	для	очной	формы	
	обуч	ения		
Курсовое проектирование		-		
Групповая, индивидуальная консультация и иные виды				
учебной деятельности, предусматривающие групповую или				
индивидуальную работу обучающихся с преподавателем				
Творческая работа (эссе)		-		
Самостоятельная работа обучающихся (всего)		102		
Вид промежуточной аттестации обучающегося				
Зачет с оценкой-5 семестр				

- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в академических часах)

для очной формы обучения

No	№ Раздел		сам	небных заняти остоятельную ощихся и тру, (в часах)	работу	Формы текущего
п/п	дисциплины	Общая трудоёмкость (часах)	аудиторные самост учебные занятия льная		самостояте льная	контроля
		всего	лекции	семинары, практическ ие занятия	работа обучающих ся	успеваемости
1.	Введение в предмет. Общая характеристика переходных элементов.	24	2	2	20	УО, УО-1, УО- 3.
2.	Свойства d — элементов I-VIII групп.	90	8	22	60	УО, УО-1, УО-3.
3.	Лантаноиды и актиноиды.	30	2	6	22	УО, УО-1, УО- 3.
4.	Итого	144	12	30	102	

Примечание: *УО - устный опрос, УО-1 - собеседование, УО-2 - коллоквиум, УО-3 - зачет, УО-4 — экзамен; ПР - письменная работа, ПР-1 - тест, ПР-2 - контрольная работа, ПР-3 эссе, ПР-4 - реферат, ПР-5 - курсовая работа, ПР-6 - научно-учебный отчет по практике, ПР-7 - отчет по НИРС, ИЗ —индивидуальное задание; ТС - контроль с применением технических средств, ТС-1 - компьютерное тестирование, ТС-2 - учебные задачи, ТС-3 - комплексные ситуационные задачи.

для очной формы обучения (заочной формы обучения нет)

4.2 Содержание дисциплины (модуля), структурированное по темам (разделам)

№	Наименование раздела	Содержание
п/п	дисциплины	Содержание

№ п/п	Наименование раздела дисциплины	Содержание
1	Раздел 1. Введение в предмет. Общая характеристика	
	переходных элементов.	
1.1	Введение в предмет. Общая характеристика переходных элементов.	Общая характеристика переходных элементов. Особенности строения атомов d- и f-элементов. Орбитальные радиусы, энергии ионизации, сродство к электрону. Многообразие степеней окисления. Отличия от элементов главных подгрупп. Высокие
		степени окисления и молекулярные соединения. Низкие степени окисления и соединения переменного состава. Металлическое состояние простых веществ.
1.2	Общая характеристика переходных элементов. Электронные аналоги емы практических/семинарских за	Сходство и различия элементов первого, второго и третьего переходных рядов. Лантаноидное сжатие. Повышенное сходство элементов - электронных аналогов второго и третьего рядов.
1.3	Общая характеристика	Общая характеристика переходных элементов.
1.0	переходных элементов.	о ощил пирикториотики поролодивит оле жентов.
T	емы лабораторных занятий (учеб	ным планом не предусмотрены)
	Раздел 2. Свойства d — элементов I-VIII групп.	
С	одержание лекционного курса	
2.1	Медь, серебро, золото. Свойства водных растворов соединений меди серебра и золота. Комплексные соединения.	Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Специфика однозарядных ионов с конфигурацией d ¹⁰ . Простые вещества: физические и химические свойства. Самородные металлы. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Химия водных растворов. Окислительно-восстановительные свойства Cu(I) и Cu(II), Au(I) и Au(III). Комплексные соединения. Биологическое значение.
2.2	Подгруппа цинка. Цинк и его свойства. Ртуть, кадмий и их соединения	Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Простые вещества: физические и химические свойства. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Химия водных растворов. Устойчивые катионные и анионные формы. Амфотерность цинка. Аквакатионы и гидроксоанионы. Биологическое значение. Особенности соединений ртути (I). Химия водных растворов. Устойчивые катионные и анионные формы. Аквакатионы и гидроксоанионы. Биологическое значение.

№ п/п	Наименование раздела дисциплины	Содержание
2.3	Подгруппа хрома Кислоты элементов подгруппы хрома, комплексные соединения Подгруппа марганца. Важнейшие бинарные химические соединения элементов подгруппы марганца. Химия водных растворов	Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Наиболее характерные степени окисления: Сг(III), Мо(VI), W(VI). Причины тугоплавкости молибдена и вольфрама. Применение в специальных сплавах. Хромирование металлов. Важнейшие бинарные химические соединения. Термическое диспропорционирование низших галогенидов. Хромовая кислота, хроматы и дихроматы. Кислоты молибдена и вольфрама и их производные. Комплексные соединения. Аква- и гидроксокомплексы. Многообразие комплексов хрома (III). Биологическое значение. Общая характеристика элементов. Строение атомов. Многообразие степеней окисления. Ядерный синтез технеция. Простые вещества. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Химия водных растворов. Марганцевая кислота. Окислительные свойства перманганатного иона. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Химия водных растворов. Устойчивые катионные и анионные формы. Устойчивость катионов Мп ²⁺ в водных растворах. Марганцевая кислота. Комплексные соединения элементов подгруппы марганца.
2.4	Железо, кобальт, никель Химия водных растворов железа, кобальта и никеля Комплексные соединения железа, кобальта и никеля	Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Понижение высших и характерных степеней окисления по сравнению с подгруппой марганца. Простые вещества: физические и химические свойства. Роль железа и его сплавов в истории цивилизации. Современные применения металлов триады железа и сплавов на их основе. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Химия водных растворов. Устойчивые катионные и анионные формы. Гидролиз солей железа. Окислительно-восстановительные свойства комплексов Fe(II) и Fe(III), Co(II) и Co(III). Многообразие и устойчивость комплексов с электронной конфигурацией d ⁶ . Биологическое значение. Комплексные соединения. Многообразие и устойчивость комплексов с электронной конфигурацией d ⁶ . Биологическое значение.

№ п/п	Наименование раздела дисциплины	Содержание
2.5	Медь, серебро, золото.	Химические свойства меди, серебра и золота Решение экспериментальных задач по теме: «Медь, серебро».
2.6	Подгруппа цинка	Химические свойства цинка, кадмия и ртути.
2.7	Подгруппа хрома	Химические свойства соединений хрома.
2.8	Решение экспериментальных задач по теме: «Подгруппа цинка, хром и его соединения»»	Решение экспериментальных задач по теме: «Подгруппа цинка, хром и его соединения»»
2.9	Подгруппа марганца	Химические свойства соединений марганца Решение экспериментальных задач по теме: «Марганец и его соединения»
2.10	Железо, кобальт, никель. Комплексные соединения железа, кобальта и никеля	Химические свойства соединений железа, кобальта и никеля Решение экспериментальных задач по теме: «Железо, кобальт, никель». Комплексные соединения железа, кобальта и никеля
2.11	Подгруппа хрома	Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Наиболее характерные степени окисления: Cr(III), Mo(VI), W(VI). Причины тугоплавкости молибдена и вольфрама. Применение в специальных сплавах. Хромирование металлов. Важнейшие бинарные химические соединения. Термическое диспропорционирование низших галогенидов.
2.12	Кислоты элементов подгруппы хрома, комплексные соединения	Кислоты элементов подгруппы хрома, комплексные соединения
2.13	Ртуть, кадмий и их соединения	Ртуть, кадмий и их соединения
2.14	d-элементы IV группы(титан, цирконий, гафний) d-элементы V группы (ванадий, ниобий, тантал)	d-элементы IV группы(титан, цирконий, гафний) d- элементы V группы (ванадий, ниобий, тантал)
2.15	Платиновые металлы.	Платиновые металлы. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Процессы аффинажа. Простые вещества. Причины высокой плотности и тугоплавкости. Химическая инертность. Перевод в раствор благородных металлов. Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Тетраоксиды осмия и рутения.

No	Наименование раздела	Содержание		
п/п	дисциплины	-		
		Комплексные соединения. Разнообразие комплексных		
TI.		соединений платиновых металлов и его причины.		
T_{0}	емы лабораторных занятий (учеб	ным планом не предусмотрены)		
	Раздел 3. Лантаноиды и			
2.1	актиноиды.	п п		
3.1	Лантаноиды . Актиноиды	Лантаноиды и актиноиды. Лантаноиды. Общая характеристика. Особенности строения атомов, причины сходства элементов, возможные состояния окисления. Содержание в природе. Разделение элементов. Физические и химические свойства простых веществ. Химические свойства соединений лантаноидов. Оксиды и гидроксопроизводные. Галогениды и другие бинарные соединения. Химия водных растворов. Особенности церия и европия. Актиноиды. Общая характеристика. Особенности строения атомов, сравнение с лантаноидами. Разнообразие состояний окисления. Содержание в природе. Радиоактивные семейства тория, урана и актиния. Ядерные реакции и синтез элементов. Физические и химические свойства простых веществ. Периодичность в изменении химических свойств, сходство с другими элементами, деление на подсемейства.		
Темы	практических/семинарских занят	 านทั		
3.2	Лантаноиды	Лантаноиды. Общая характеристика. Особенности строения атомов, причины сходства элементов, возможные состояния окисления. Содержание в природе. Разделение элементов. Физические и химические свойства простых веществ. Особенности церия и европия.		
3.3	Актиноиды	Актиноиды. Общая характеристика. Особенности строения атомов, сравнение с лантаноидами. Разнообразие состояний окисления. Содержание в природе. Радиоактивные семейства тория, урана и актиния.		
3.4	Обобщение сведений по теме «Переходные элементы». Выполнение упражнений	Обобщение сведений по теме «Переходные элементы». Выполнение упражнений		
Темы	лабораторных занятий (учебным	планом не предусмотрены)		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине «Химия переходных элементов»

Самостоятельная работа студентов по курсу призвана, не только закреплять и углублять знания, полученные на аудиторных занятиях, но и способствовать развитию у студентов творческих навыков, инициативы, умения организовать своё время. При выполнении плана самостоятельной работы студенту необходимо прочитать теоретический материал в

учебниках и учебных пособиях, указанных в списке литературы. Студенту необходимо творчески переработать изученный самостоятельно материал и выполнить упражнения, указанные преподавателем. Проверка выполнения плана самостоятельной работы проводится на практических и индивидуальных занятиях.

		Само	стоятельная работа сту,	дентов	
/п	Название раздела, темы	Кол-во часов	Виды самостоятельной работы	Сроки выполн.	Формы контроля
	Введение в предмет. Общая характеристика переходных элементов.	6		1-2 неделя семестра	Вопрос зачета, тест
	Свойства d – элементов I-VIII групп.	6		3-8 неделя семестра	Вопрос зачета, тест
	Лантаноиды и актиноиды.	50		9-10 неделя семестра	Вопрос зачета, тест

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Контроль знаний студентов проводится по следующей схеме:

- промежуточная аттестация знаний и умений в течение семестра;
- аттестация по итогам семестра в форме зачета с оценкой.

Материалы, определяющие порядок и содержание промежуточных и итоговой аттестаций, включают:

- контрольные вопросы по темам дисциплины;
- фонд тестовых заданий по дисциплине;
- методические указания к выполнению практических работ.

Знания и умения студентов при итоговом контроле по дисциплине оцениваются на «хорошо», «отлично» и «удовлетворительно».

Итоговая оценка знаний и умений по дисциплине складывается из трех частей:

- 20 % оценки текущего контроля;
- 30 % оценка за тестовые задания;
- 50 % оценка за зачет.

Текущий контроль.

Формы контроля: тесты, защита практических работ, устный опрос, семинар. Промежуточный контроль. Критерии оценки по итогам тестирования:

56-70 баллов - «3»

71-85 баллов – «4»

86-100 баллов - «5»

Итоговый контроль: Зачет с оценкой в 5 семестре.

6.1. Паспорт фонда оценочных средств по дисциплине (модулю)

No	Контролируемые разделы (темы)	Код контролируемой	наименование
Π/Π	дисциплины	компетенции (или её части) / и	оценочного
	(результаты по разделам)	ее формулировка – по желанию	средства
1.	Введение в предмет. Общая	СПК-3, ПК-1	Вопрос зачета,
	характеристика переходных		практической
	элементов.		работы

No	Контролируемые разделы (темы)	Код контролируемой	наименование
Π/Π	дисциплины	компетенции (или её части) / и	оценочного
	(результаты по разделам)	ее формулировка – по желанию	средства
2.	Характеристика d – элементов I-	СПК-3, ПК-1	Вопрос зачета,
	VIII групп.		практической
			работы,
			решение
			эксперименталь
			ных задач.
3.	Лантаноиды и актиноиды	СПК-3, ПК-1	Вопрос зачета,
			практической
			работы

6.2. Типовые контрольные задания или иные материалы

6.2.1. Зачет с оценкой в 5 семестре

а) типовые вопросы

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЗАЧЕТУ

- 1.Общая характеристика переходных элементов. Особенности строения атомов d- и f- элементов. Орбитальные радиусы, энергии ионизации, сродство к электрону. Многообразие степеней окисления. Отличия от элементов главных подгрупп. Высокие степени окисления и молекулярные соединения. Низкие степени окисления и соединения переменного состава. Металлическое состояние простых веществ.
- 2.Медь, серебро, золото. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Специфика однозарядных ионов с конфигурацией d^{10} .
 - 3. Физические свойства меди, серебра и золота. Самородные металлы.
- 4.Важнейшие бинарные химические соединения меди, серебра и золота: оксиды, галогениды, халькогениды.
 - 5.Окислительно-восстановительные свойства Cu(I) и Cu(II), Au(I) и Au (III).
 - 6. Комплексные соединения меди, серебра и золота. Биологическое значение.
- 7. Подгруппа цинка. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Физические свойства простых веществ.
- 8.Особенности соединений ртути (I). Уникальные свойства металлической ртути. Применение.
- 9.Важнейшие бинарные химические соединения элементов подгруппы цинка: оксиды, галогениды, халькогениды. Устойчивые катионные и анионные формы соединений цинка.
 - 10. Амфотерность цинка. Аквакатионы и гидроксоанионы.
 - 11. Биологическое значение элементов подгруппы цинка.
- 12. D-элементы IV группы. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Химические свойства.
- 13. D-элементы V группы. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Химические свойства.
- 14.Подгруппа хрома. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Наиболее характерные степени окисления: Cr(III), Mo(VI), W(VI). Простые вещества: физические и химические свойства. Причины тугоплавкости молибдена и вольфрама. Применение в специальных сплавах. Хромирование металлов.
- 15.Важнейшие бинарные химические соединения элементов подгруппы хрома: оксиды, галогениды, халькогениды. Зависимость свойств от степени окисления. Термическое диспропорционирование низших галогенидов.
 - 16. Хромовая кислота, хроматы и дихроматы.
 - 17. Кислоты молибдена и вольфрама и их производные.
 - 18. Комплексные соединения элементов подгруппы хрома. Аква- и гидроксокомплексы.

Многообразие комплексов хрома (III).

- 19. Биологическое значение элементов подгруппы хрома.
- 20.Подгруппа марганца. Общая характеристика элементов. Строение атомов. Многообразие степеней окисления. Ядерный синтез технеция. Простые вещества: физические свойства. Применение.
- 21.Важнейшие бинарные химические соединения элементов подгруппы хрома: оксиды, галогениды, халькогениды.
- 22. Взаимодействие с кислотами и основаниями элементов подгруппы марганца. Устойчивые катионные и анионные формы. Устойчивость катионов Mn²⁺ в водных растворах.
 - 23. Марганцевая кислота. Окислительные свойства перманганатного иона.
 - 24. Устойчивость производных рения (VII).
 - 25. Комплексные соединения элементов подгруппы марганца.
 - 26. Биологическое значение элементов подгруппы марганца.
- 27.Общая характеристика железа, кобальта и никеля. Строение атомов, возможные степени окисления в соединениях. Понижение высших и характерных степеней окисления по сравнению с подгруппой марганца.
- 28. Физические свойства железа, кобальта и никеля. Роль железа и его сплавов в истории цивилизации. Современные применения металлов триады железа и сплавов на их основе.
- 29.Важнейшие бинарные химические соединения железа, кобальта и никеля: оксиды, галогениды, халькогениды.
- 30. Взаимодействие железа, кобальта и никеля с кислотами и щелочами. Устойчивые катионные и анионные формы.
 - 31. Комплексные соединения железа, кобальта и никеля.
 - 32.Окислительно-восстановительные свойства комплексов Fe(II) и Fe(III), Co(II) и Co(III).
- 33.Платиновые металлы. Общая характеристика элементов. Строение атомов, возможные степени окисления в соединениях. Процессы аффинажа. Простые вещества. Причины высокой плотности и тугоплавкости.
- 34.Химическая инертность платиновых металлов. Перевод в раствор благородных металлов.
- 35.Важнейшие бинарные химические соединения: оксиды, галогениды, халькогениды. Тетраоксиды осмия и рутения.
- 36.Комплексные соединения платиновых металлов. Разнообразие комплексных соединений платиновых металлов и его причины.
- 37. Лантаноиды. Общая характеристика. Особенности строения атомов, причины сходства элементов, возможные состояния окисления. Содержание в природе. Разделение элементов. Физические и химические свойства простых веществ. Химические свойства соединений лантаноидов. Оксиды и гидроксопроизводные. Галогениды и другие бинарные соединения. Химия водных растворов. Особенности церия и европия.
- 38. Актиноиды. Общая характеристика. Особенности строения атомов, сравнение с лантаноидами. Разнообразие состояний окисления. Содержание в природе. Радиоактивные семейства тория, урана и актиния. Ядерные реакции и синтез элементов. Физические и химические свойства простых веществ. Периодичность в изменении химических свойств, сходство с другими элементами, деление на подсемейства.

б) критерии оценивания компетенций (результатов)

Студент, изучивший курс, должен:

знать: важнейшие химические и физические свойства переходных элементов и соединений и их роль в жизни современного общества; биологическое значение элементов и их соединений.

уметь: использовать знания теоретических основ химии переходных элементов на практике при решении конкретных расчетных задач, при постановке лабораторных методов изучения веществ и химических процессов; самостоятельно осуществлять основные приемы работы в химической лаборатории.

владеть(распознавать, узнавать, определять) навыками сравнительного анализа химических элементов;

понимать закономерности в изменении свойств элементов по горизонтальным (периоды) и вертикальным (группы и подгруппы) рядам периодической системы Д.И. Менделеева; понимать закономерности в изменении устойчивости окислительно-восстановительных и кислотно-основных свойств водородных и кислородных соединений; предсказывать свойства элементов и их соединений по положению химических элементов в периодической системе Д.И. Менделеева, строения и свойств атомов; знать значения переходных элементов для живых систем;

-применять и использовать в будущей профессиональной деятельности знания о свойствах переходных элементов.

в) описание шкалы оценивания

В зависимости от успеваемости студента в течение учебного семестра и на основании теоретического опроса выставляются:

«отлично» - выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач; **«хорошо»** - выставляется студенту, показавшему полные знания учебной программы дисциплины, умение применять их на практике и допустившему в ответе или в решении задач некоторые неточности;

«удовлетворительно» - выставляется студенту, показавшему фрагментарный, разрозненный характер знаний, при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

«неудовлетворительно» - выставляется студенту, ответ которого содержит существенные пробелы в знании основного содержания учебной программы дисциплины и не умеющего использовать полученные знания при решении практических задач.

6.2.2 Наименование оценочного средства* (в соответствии с таблицей 6.1)

- а) типовые задания (вопросы) приведены в приложении
- б) описание шкалы оценивания приведена в приложении к технологической карте.

6.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

Промежуточная аттестация по дисциплине включает следующие формы контроля: зачет с оценкой в 5 семестре. В связи с введением в вузе балльно-рейтинговой оценки (БРС) оценивания результатов обучения, по дисциплине разработана технологическая карта:

Технологическая карта дисциплины

технологическая карта дисциплины					
$N_{\underline{0}}$	Срок	Изучаемая тема и вид	Рез-т уч. деят-	Код	Кол-во возм.
Π/Π	сдачи	уч. деят-сти	сти	форм.	баллов тах
	работы			ком-ции	(min)
	(неделя)				
1	В	Посещение лекций	Конспекты	СПК-3,	6(0)
	течение		лекций	ПК-1	
	семестра				
2	В	Посещение	Ответы на	СПК-3,	15 (0)
	течение	практических занятий	практических	ПК-1	
	семестра		работах		
3	В	Выполнение тестов	Решение	СПК-3,	34(0)
	течение		теста	ПК-1	
	семестра				
4	В	Составление	Конспекты	СПК-3,	5(0)
	течение	конспектов по темам	по темам	ПК-1	

семестра	сам. работы		
Всего			60(0)

Приложение к технологической карте

Критерии оценивания результатов учебной деятельности.

- а) Посещение лекций. Посещение каждой лекции оценивается в 1 балл, которые суммируются. Лекции, пропущенные по уважительной причине, автоматически добавляются к общей сумме баллов по данному показателю. Максимальная сумма баллов за посещение лекций 6.
- б) Посещение практических занятий оценивается в 1 балл. На практических занятиях оцениваются ответы студентов. Максимальная сумма баллов (1) выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания по теме занятия.
 - в) Выполнение теста. Критерии оценки по итогам тестирования:
 - 56-70 баллов «3»
 - 71-85 баллов «4»
 - 86-100 баллов «5». Если тест сдан позже, то выше чем 3 балла он не оценивается.
- г) Выполнение заданий, вынесенных на самостоятельное изучение, оценивается в один балл, при этом студент должен предоставить конспект.
- е) Зачет с оценкой проводится по билетам. Экзаменационный билет включает 2 теоретических вопроса и 1 задачу или практических вопроса. Знания, умения, владения по дисциплине считаются защищенными по шкале:
- 40 баллов выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, то есть студент ответил на вопросы и решил задачи.
- 30 баллов выставляется студенту, который неполно ответил на вопросы и решил 1 задачу.
- 20 баллов выставляется студенту, который неполно ответил на вопросы и решил 1 задачу.
- 10 баллов выставляется студенту, который неполно ответил на вопросы и не решил задачи.
- 0 баллов выставляется студенту, который показал фрагментарный, разрозненный характер знаний, при этом он не владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и не может применять полученные знания по образцу в стандартной ситуации.

Сумма баллов, полученная студентом на экзамене и в течение семестра, суммируется и выставляется итоговая оценка согласно требованиям, указанным в таблице.

Если студент по итогам семестра набирает 60 баллов, он автоматически может получить оценку – удовлетворительно.

Таблица. Перевод баллов из 100 – балльной шкалы в числовой и буквенный эквивалент экзаменационной оценки

Сумма баллов для дисциплины	Отметка	Буквенный эквивалент
86-100	5	отлично
66-85	4	хорошо
51-65	3	удовлетворительно
0-50	2	неудовлетворительно

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

а) основная учебная литература:

1. Нестеров, А.А. Химия переходных элементов: учебное пособие / А.А. Нестеров,

- Е.М. Баян, И.В. Рыбальченко. Ростов-на-Дону: Южный федеральный университет, 2015. 68 с.: табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=461988 (дата обращения: 15.11.2020). ISBN 978-5-9275-1676-6. Текст: электронный.
- 2. Ларичев, Т.А. Основы химии элементов: учебное пособие / Т.А. Ларичев, Т.Ю. Кожухова. Кемерово: Кемеровский государственный университет, 2012. 147 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=232759 (дата обращения: 15.11.2020). ISBN 978-5-8353-1515-4. Текст: электронный

б) дополнительная учебная литература:

- 1. Валуева, Т.Н. Химия элементов. d-элементы: методическое пособие для самостоятельной работы студентов / Т.Н. Валуева, Ю.М. Атрощенко. Москва ; Берлин : Директ-Медиа, 2018. 53 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=499223 (дата обращения: 15.11.2020). Библиогр. в кн. ISBN 978-5-4475-9819-8. DOI 10.23681/499223. Текст : электронный.
- 2. Сирик, С.М. Химия s- и p-элементов: электронное учебное пособие / С.М. Сирик, Т.Ю. Кожухова ; Кемеровский государственный университет, Кафедра неорганической химии. Кемерово : Кемеровский государственный университет, 2015. Ч. 1. 204 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=481628 (дата обращения: 15.11.2020). Библиогр. в кн. ISBN 978-5-8353-1786-8. ISBN 978-5-8353-1787-5 (ч. 1). Текст : электронный.
- 3. Сирик, С.М. Химия s- и p-элементов : учебное пособие : [16+] / С.М. Сирик, Т.Ю. Кожухова ; Кемеровский государственный университет, Кафедра аналитической и неорганической химии. Кемерово : Кемеровский государственный университет, 2016. Ч. 2. 134 с.: табл., ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=574124 (дата обращения: 15.11.2020). Библиогр. в кн. ISBN 978-5-8353-1786-8. ISBN 978-5-8353-2069-1 (Ч. 2). Текст : электронный.
- 4. Крашенинникова, Н.Г. Химия металлов: лабораторный практикум / Н.Г. Крашенинникова, А.И. Винокуров; Поволжский государственный технологический университет. Йошкар-Ола: Поволжский государственный технологический университет, 2016. 96 с.: табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=459487 (дата обращения: 15.11.2020). Библиогр.: с. 90. ISBN 978-5-8158-1759-3. Текст: электронный
- 8. Перечень ресурсов информационно телекоммуникационной сети «интернет», современных профессиональных баз данных (СПБД) и информационных справочных систем (ИСС) необходимых для освоения дисциплины

Ресурсы информационно - телекоммуникационной сети «интернет»

- 1. Электронно-библиотечная система "Лань"» http://e.lanbook.com Договор № 22-ЕП от 05 марта 2020 г., период доступа с 03.04.2020 г. по 02.04.2021 г., Доступ из локальной сети НФИ КемГУ свободный, неограниченный, с домашних ПК авторизованный.
- 2. Электронно-библиотечная система «Знаниум» www.znanium.com Договор № 4222 эбс от 10.03.2020, период доступа с 16.03.2020 г. по 15.03.2021 г. Доступ из локальной сети НФИ КемГУ свободный, неограниченный, с домашних ПК авторизованный.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» (базовая часть) http://biblioclub.ru. Контракт № 185-12/19 от 14.02.2020 г., период доступа с

- 15.02.2020 г. до 14.02.2021 г. Доступ из локальной сети НФИ КемГУ свободный, неограниченный, с домашних ПК авторизованный.
- 4. Электронно-библиотечная система «Юрайт» http://urait.ru. Договор № 01-ЕП/44 от 14.02.2020 г., период доступа с 17.02.2020 г. до 16.02.2021 г. Доступ из локальной сети НФИ КемГУ свободный, с домашних ПК авторизованный.
- 5. Электронная полнотекстовая база данных периодических изданий по общественным и гуманитарным наукам ООО «ИВИС», https://dlib.eastview.com.

Договор № 223-П от 05.12.2019 г., период подписки с 01.01.2020 г. по 31.12.2020 г., доступ предоставляется из локальной сети НФИ КемГУ.

- 5. **Научная электронная библиотека** http://elibrary.ru. Доступ к отдельным периодическим изданиям. Договор № SU-19-12/2019-2 от 24.12.2019 г. период подписки с 01.01.2020 г. по 31.12.2020 г. Доступ авторизованный.
- 6. **Межвузовская электронная библиотека** (**МЭБ**) https://icdlib.nspu.ru НФИ КемГУ является участником и пользователем МЭБ. Договор №34 от 30.09.2020 г. (договор бессрочный). Доступ из локальной сети НФИ КемГУ свободный, с домашних ПК авторизованный.
- 7. Электронная библиотека НФИ КемГУ https://elib.nbikemsu.ru/MegaPro/Web. Доступ к электронному каталогу свободный. Доступ к полным текстам изданий по номеру читательского билета.

Современные профессиональные базы данных (СПБД) и информационные справочные системы (ИСС) по дисциплине

- 1. WebElements: онлайн-справочник химических элементов. http://webelements.narod.ru/
- 2. <u>neochemistry.ru</u> Общая химия, органическая и неорганическая химия, решение задач и др. http://neochemistry.ru/zadachki2/index.php?option=com_frontpage&Itemid=1
- 3. Журнал "Химия и Жизнь XXI век" http://www.hij.ru
- 4. Алхимик: сайт по химии. Сайт о химических веществах и явлениях интересно, содержательно, доступно, полезно для широкого круга читателей, от самых маленьких до студентов и учителей. http://alhimik.ru/index.htm
- 5. Портал фундаментального химического образования России http://www.chemnet.ru
- 6. Российское образование. [Электронный ресурс]. URL: http://www.edu.ru/
- 7. База данных публикаций журнала Образование и общество, Федеральный портал 3. Российское образование <u>www.edu.ru</u>, единое окно доступа к информационным ресурсам http://window.edu.ru/resource/525/2525
- 8. Соросовский образовательный журнал на сайте <u>www.issep.rssi.ru</u>; http://www.netbook.perm.ru/soj.html
- 9. Словари и энциклопедии онлайн http://dic.academic.ru
- 10. Рубикон крупнейший энциклопедический ресурс Интернета http://www.rubicon.com/
- 11. Большая российская энциклопедия https://bigenc.ru/rf

9. Методические указания для обучающихся по освоению дисциплины

Целью настоящего курса является изучение свойств переходных элементов и их соединений.

В ходе изучении дисциплины «Химия переходных элементов" студент посещает лекции и практические занятия.

Лекционный курс дисциплины предусматривает изучение базовых разделов данной науки, что отражено в тематическом планировании и содержании предмета. Изучение данной дисциплины представляет определенные трудности из-за большого объема фактического материала, базирующегося на курсе общей химии. Поэтому освоение этого курса

предполагает систематическую и последовательную работу студентов на лекциях, практических занятиях и самостоятельно.

Методические указания для преподавателей

Особенностью дисциплины «Химия переходных элементов» специальности является то, что данная дисциплина продолжает курс общей и неорганической химии. Поэтому преподавателю необходимо изложить материал в доступной форме, сохраняя при этом научную основу содержания и опираясь на общий курс химии. При изучении необходимо целостно учитывать естественнонаучную дисциплины И системно направленность факультета. У студентов должно сложиться представление о химии переходных элементов как о науке, которая является теоретической базой для рассмотрения на молекулярном уровне многих процессов, происходящих в живых организмах. Знания по химии помогут объяснить химические основы биологических процессов и физиологические механизмы работы различных органов и систем растений, животных и человека

Необходимо уделить большое внимание проверке самостоятельной работы студентов и повторению основных вопросов общего курса химии. На лекциях использовать визуализацию и средний темп изложения. Перед выполнением практических работ проводить актуализацию знаний путем опроса и давать необходимые пояснения.

На практических занятиях должны преобладать следующие методы: а)практические(решение задач, выполнение упражнений); б)вербальные(преобладающим методом должно быть объяснение)

Преподавателю необходимо готовиться к каждому занятию, то есть проработать тему занятия, решить все задачи и упражнения, наметить, кого из студентов спросить по данной теме.

В курсе читается 6 лекций и проводится 15 практических работ.

Методика работы с лекционным материалом

- 1. Обязательным условием является посещение всех лекций и конспектирование излагаемого материала.
- 2. Усвоение и закрепление материалов лекции необходимо проводить в первые дни после её прослушивания, так как это потребует наименьших затрат времени на изучение данной темы.
- 3. Вначале необходимо изучить конспект лекции, схемы и рисунки, приведённые в нём. При необходимости следует обратиться к рекомендованной литературе и дополнить лекционные сведения.
- 4. В заключение мысленно проработать ответы на вопросы плана лекции.
- 5. В случае пропуска лекции изучение материала и подготовку реферата по теме лекции проводить по рекомендованной литературе. При этом значительно увеличивается время самоподготовки.
- 6. Повторно возвратиться к материалам лекции необходимо:
- при подготовке к итоговому занятию;
- при подготовке к итоговому контролю (при этом необходимо обратить внимание на объём контрольных вопросов).

Отработка пропущенных лекций и практических занятий

- 1. Все пропущенные лекции и практические занятия отрабатываются студентами в полном объёме (час за час).
- 2. Пропущенные занятия отрабатываются преподавателю в дни его работы со студентами по графику индивидуальной работы.
- 3. Для отработок пропущенных лекций необходимо, используя рекомендованную литературу, составить реферат по всем вопросам плана лекции и по результатам собеседования с лектором получить по теме лекции зачет.

- 4. Для отработки практического занятия необходимо самостоятельно подготовиться по теме занятия. Во время отработки изучить и усвоить практическую часть занятия, а затем ответить на положительную оценку преподавателю.
- 5. При наличии неотработанных лекций и практических занятий студенты не допускаются к итоговому контролю. Если студент пропустил более 50 % практических занятий, то он отрабатывает их по индивидуальному плану во внеаудиторное время.

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине, используемого программного обеспечения

Материально-техническая база

Учебные занятия по дисциплине проводятся в учебных аудиториях НФИ КемГУ:

335 Учебная аудитория для проведения:

- занятий лекционного типа;

Специализированная (учебная) мебель: доска меловая, столы, стулья.

Оборудование: переносное - ноутбук, проектор, экран.

Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice (свободно распространяемое Π O).

Интернет с обеспечением доступа в ЭИОС.

337 Лаборатория химии. Учебная аудитория для проведения:

- занятий семинарского (практического) типа;
- групповых и индивидуальных консультаций;
- текущего контроля и промежуточной аттестации.

Специализированная (учебная) мебель: доска меловая, столы лабораторные, стулья, раковины, вытяжной шкаф, демонстрационный стол.

Оборудование для презентации учебного материала: *переносное* -ноутбук, проектор, экран.

Лабораторное оборудование и материалы: поляриметр, аналитические приборы, весы, термостат, холодильник, реостат, аквадистилятор, материалы для проведения лабораторных работ (колбы, пробирки и другая химическая посуда), реактивы для проведения лабораторных работ, РН-метр, рефрактометр, аппарат для проведения химических реакций, аппарат Киппа, прибор для опытов по химии с электрическим током (лабораторный), прибор для получения галоидоалканов демонстрационный, установка для перегонки веществ.

Учебно-наглядные пособия: набор «ГИА - Лаборатория по химии», стенды «Периодичная система Менделеева» и другие.

Используемое программное обеспечение: MSWindows (MicrosoftImaginePremium 3 year по сублицензионному договору № 1212/КМР от 12.12.2018 г. до 12.12.2021 г.), LibreOffice (свободно распространяемое Π O).

Интернет с обеспечением доступа в ЭИОС.

11. Иные сведения и (или) материалы

11.1. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Особенности реализации программы курса для инвалидов и людей с ограниченными возможностями здоровья зависит от состоянии их здоровья и конкретных проблем, возникающих в каждом отдельном случае.

• При организации образовательного процесса для слабослышащих студентов от преподавателя курса требуется особая фиксация на собственной артикуляции. Говорить

следует немного громче и четче.

- На занятиях преподавателю требуется уделять повышенное внимание специальным профессиональным терминам, а также к использованию профессиональной лексики. Для лучшего усвоения слабослышащими специальной терминологии необходимо каждый раз писать на доске используемые термины и контролировать их усвоение.
- В процессе обучения рекомендуется использовать разнообразный наглядный материал. Все лекции курса снабжены компьютерными мультимедийными презентациями.
- В процессе работы со слабовидящими студентами педагогическому работнику следует учитывать, для усвоения информации слабовидящим требуется большее количество повторений и тренировок по сравнению с лицами с нормальным зрением.
- Информацию необходимо представлять в том виде, в каком ее мог бы получить слабовидящий обучающийся: крупный шрифт (16 18 пунктов). Следует предоставить возможность слабовидящим использовать звукозаписывающие устройства и компьютеры во время занятий по курсу. При лекционной форме занятий студенту с плохим зрением следует разрешить пользоваться диктофоном это его способ конспектировать. Не следует забывать, что все записанное на доске должно быть озвучено.
- В работе с маломобильными обучающимися предусматривается возможность консультаций посредством электронной почты.

11.2.Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине.

В соответствии с требованиями ФГОС при реализации различных видов учебной работы в процессе изучения дисциплины «Химия переходных элементов» используются следующие активные и интерактивные формы проведения занятий: лекции; лекциипрезентации, проблемные лекции

На практических занятиях предусмотрены следующие интерактивные формы обучения в образовательном процессе:

- решение экспериментальных задач
- учебные дискуссии на заданную тему.
- дополнительные консультации индивидуальные и групповые.

Проводится текущая проверка знаний (ответы на практических занятиях, тесты, индивидуальные задания).

Составитель (и): Иванов Ф.И. профессор кафедры естественных наук, докт. хим наук

Типовые задания

Тест «Свойства переходных металлов»

- 1. При сгорании железа в кислороде образуется вещество состава:
- 1)Fe2O3 2)Fe3O4 3)FeO 4)Fe[FeO2]2
- 2.Как получить из железа: a) FeCl2; б) FeCl3.
- 1) действием Cl2 (газ) 2) действием раствора HCl 3) действием смеси HCl+Cl2(газ) 4) действием раствора CuCl2
- 3.Выходящий из домны газ называют колошниковым или доменным. Его состав (объемные доли,%):CO 32.0, CO2 14.0, N2 54.0 Сколько воздуха (м3) потребуется для сжигания 1 м3 этого газа?
- 1)0,16 2) 0,32 3) 0,8 4) 1,6 5)4
- 4.Почему комплексные ионы, образованные ионами Cu+, Ag+, Zn2+, Cd2+, Al3+ бесцветны?
- 1)У этих ионов нет свободных d орбиталей 2)Не возможен проскок электронов c $d(\gamma)$ на $d(\epsilon)$ орбиталь 3)В этих ионах не реализуется высшая степень окисления 4) $d(\gamma)$ и $d(\epsilon)$ орбитали полностью заполнены
- 5.Соединение состава Co(SO4)Вг 5NН3 имеет 2 изомера. Из раствора первого изомера при добавлении избытка нитрата серебра выпадает желтый осадок бромида серебра, а из раствора второго белый осадок сульфата серебра. Каковы координационные формулы первого и второго изомеров?
- 1)[Co(NH3)5Br]SO4 2)[Co(NH3)5SO4]Br 3) [CoSO4Br](NH3)5
- 6.На какие ионы в водных растворах диссоциирует комплексное соединение K[Ag(CN)2]?
- 1)K+,Ag+,2CN- 2) K+, [Ag(CN)2]- 3) K+, 2CN- 4) Ag+, 2CN-
- 7.а) желтая кровяная соль; б) красная кровяная соль?(Укажите название и формулу).
- 1) Гексацианоферрат (П) калия 2) Гексацианоферрат (Ш) калия 3) К3 [Fe(CN)6] 4) К4 [Fe(CN)6]
- 8. Какая из электронных конфигураций отвечает: а) атому хрома; б) иону хрома (3+)?
- 1)[Ar] 3d44s2 2)[Ar] 3d54s1 3) [Ar]3d3 4)[Ar] 3d4
- 9. Расположите оксиды хрома в порядке возрастания кислотных свойств. CrO3,CrO ,Cr2O3
- 10. К 3,92 г сульфата хрома (3+) добавили 2,00 г гидроксида калия. Какую массу гидроксида калия надо еще добавить, чтобы получить прозрачный раствор?
- 1) 1,24 2) 3,72 3) 0,62 4)2,48
- 11. Какая из электронных конфигураций отвечает:а) атому железа;б) Иону железа (2+);
- в) иону железа (3+)? 1)[Ar]3d6 2) [Ar]3d5 3) [Ar]3d64s2
- 12.Почему нельзя хранить соли железа (3+) в: а) оцинкованных; б) в медных сосудах?
- 1)Соли железа (3+) подвергаются гидролизу по катиону, рН <7
- 3) Более активный металл способен вытеснять менее активный из его солей
- 3)Железо (3+) в химических реакциях может выступать в роли окислителя
- 13. Почему соединение Fe3O4 называют и оксидом железа (П, Ш), и ферритом железа?
- 1)Так как это соединение парамагнитно 2)Потому что это смешанный оксид Fe2O3×FeO 3) Так как это комплексное соединение
- 14. Определите, какое вещество вступило в реакцию:
- ? + H2SO4(конц.) + 18HNO3(конц.) \rightarrow Fe2(SO4)3 +18NO2 + x H2O ?
- 1)FeSO4 2)FeSO4×7H2O 3)Железный купорос 4)FeS 5)FeS2 пирит
- 15. Определите, какое вещество вступило в реакцию:
- ? $+14 \text{ H2SO4}(\text{конц.}) \rightarrow \text{Fe2}(\text{SO4})3 + 15\text{SO2} + \text{x H2O}$?
- 1)FeSO4 2) FeSO4×7H2O 3) FeS 4)FeS2 пирит
- 16.Какое вещество выпадет в осадок, если к раствору соды добавить кристаллы медного купороса?
- 1)Голубой Сu(OH)2 2)Черный СuO 3)Зеленоватый [Сu OH]2СОЗ
- 17. Почему цинк в соединениях имеет постоянную степень окисления (+2)?

1)Он находится во второй группе ПСХЭ 2)У него полностью заполненный d-подуровень 3) Это щелочно-земельный металл

18.С каким ионом другого элемента совпадает электронная конфигурация иона цинка?

1) Cu+ 2) Cu2+ 3) Ga3+ 4)Cd2+

19.Определите степень окисления железа в комплексных соединениях:

1)0 3) 3 4)6 2) 2

20. Расположите оксиды марганца в порядке возрастания кислотных свойств.

1) Mn2O7 2) MnO 3)MnO3 4)MnO2

Составитель (и): Черемнова Т.В. доцент кафедры естественных наук и методики преподавания, канд хим наук
(фамилия, инициалы и должность преподавателя (ей))